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Abstract
This paper studies how machine learning predictions can improve the effectiveness and effi-
ciency of college-choice advising. When applying to colleges, students often incorrectly predict
their admission probabilities. Personalized advising can effectively reduce prediction mistakes
but is not scalable. Using a large-scale field experiment under centralized admissions, I showed
that personalized advising substantially improved college access and match without changing
students’ college preferences. Machine learning predictions reduced the human labor of the
intensive data analysis needed for advising but achieved similar treatment effects to conven-
tional expert advising. A supplemental survey experiment decoded how human expertise and
machine learning improved college-choice decisions.
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1 Introduction

The decision of whether and where to attend college is widely recognized as a critical moment

that can have a profound impact on students’ lives. Unfortunately, many students make suboptimal

college choices during the complex transition from high school to college, which results in them

attending an academically undermatched college (Bowen, Chingos and McPherson, 2009; Hoxby

and Avery, 2013; Smith, Pender and Howell, 2013; Dillon and Smith, 2017; Black, Cortes and

Lincove, 2020). College undermatch has large, negative impacts on students’ college and labor

market outcomes (Howell and Pender, 2016; Ovink et al., 2018; Dillon and Smith, 2020), offsetting

other policy efforts to improve college-going outcomes through academic preparation and financial

aid (Page and Scott-Clayton, 2016). Over the past decade, research and policy interventions

have emerged focused on improving students’ college choice decisions – ranging from low-touch

information interventions to intensive personalized advising programs.1

One of the decisions that result in academic undermatch is to apply to college based on

inaccurate predictions of the probabilities of college admissions due to lack of information and/or

guidance (Hoxby and Avery, 2013; Kapor, Neilson and Zimmerman, 2020; Arteaga et al., 2021;

Mulhern, 2021). Personalized advising can effectively reduce prediction mistakes and improve

college match; however, those programs are difficult to be implemented at scale.2 As a common

challenge to social policy programs, the scale-up problem results from the same underlying con-

straint: Some “inputs” to a program are in limited supply (Davis et al., 2017; Muralidharan and

Niehaus, 2017). Advisers – the key input to college-going advising programs – are inelastically

supplied in quantity and quality, and often come with high costs. Since effective college-going

advising requires intensive guidance, instruction, and assistance and we may not be able to hire

and train enough qualified advisers to provide such advising (Bettinger and Evans, 2019; Gurantz

et al., 2020b), personalized advising is unlikely to be scalable as a system-level policy intervention

to serve a large number of students.

In this paper, I study a new policy solution that uses machine learning predictions to scale

1Recent summaries include Thaler and Sunstein (2008); White House (2014); Castleman, Schwartz and Baum (2015);
Lavecchia, Liu and Oreopoulos (2016); Page and Scott-Clayton (2016); Castleman (2017); French and Oreopoulos (2017);
Damgaard and Nielsen (2018); J-PAL (2018); and Schmidt and Park (2021).

2Advising examples include Bettinger et al. (2012); Carrell and Sacerdote (2017); Oreopoulos, Brown and Lavecchia
(2017); Oreopoulos and Petronijevic (2018); Bettinger and Evans (2019). In contrast, light-touch information and nudge
interventions can be provided to a large number of students with a low cost but may not be sufficiently effective in
reducing college undermatch (Hoxby and Turner, 2013; ?; Bergman, Denning and Manoli, 2019; Evans and Boatman,
2019; Hyman, 2019; Avery et al., 2020; Gurantz et al., 2020a).
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up an effective personalized college application advising program to improve student-college

match and reduce inequality in college access. In prior work, I developed a personalized advising

program to help students make informed college choice decisions (Ye, 2020). Personalized advising

provided students with the “human expertise” to make accurate predictions of college admissions

probabilities and to submit college applications based on the predictions. However, this effective

advising program had the limitation of requiring a a large supply of expert advisers. This paper

proposes and examines an effort to scale up the personalized advising through increasing the

intensive margin of labor supply by using big data and machine learning algorithms to simplify

the prediction of college admissions probabilities – the most complex and time-consuming step

during the personalized college-choice advising.

To estimate the causal effects of machine learning-assisted personalized advising on college

choice behaviors and admissions outcomes, I conducted a large-scale randomized controlled trial

(RCT) among the universe of high school graduates in 2017 in Ningxia, one of the poorest provinces

in China. China is an ideal setting to study behavioral interventions in college choice as it has the

largest centralized college admissions market in the world: Each year, about ten million Chinese

high school graduates apply to colleges; and more than three million students undermatch because

of their college choices. As the centralized system eliminates behavioral barriers for information

and simplifies application process, this paper is able to identify students’ strategic decisions in

college choice. Furthermore, I am able to credibly identify the impacts of college choice behaviors

on admissions outcomes, because the variation in admissions outcomes is solely determined by

students’ college choice behaviors when holding their college entrance exam scores constant.3

In the second year of the Bright Future of China Project-Ningxia following Ye (2020), with

the close collaboration with Ningxia Department of Education, I used a student-level stratified

randomization design. As summarized in Figure A.1, I randomly assigned students into one

of the three groups: (1) 5,647 students were provided access to the machine learning-assisted

personalized advising; (2) 5,370 students were provided access to a low-touch “business as usual”

advising group; and (3) the remaining 43,038 students served as the control group.4 In the “machine

learning” group, expert advisers used the assistance of machine learning predictions and relevant

data analytics to provide students with conventional personalized advising. The “business as usual”

3In contrast, decentralized admissions consider both academic achievement and other confounding factors including
extracurricular activities, athletic abilities, and personal qualities, some of which are not observable to researchers and
thus may result in omitted variable bias.

4The number of students in the two treatment groups were determined by the estimated individualized advising
capacity and the expected take-up rate of 20% in each group.
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advising provided a generic college application guide.

Results indicate that the personalized advising assisted by machine learning substantially

improved college access and match, which closely mirrored the effect of the pure expert advising in

the previous year but dramatically increased the advising productivity. Compliers of the machine

learning-assisted advising were admitted to colleges where entrance exam score quality measure is

0.6 standard deviations higher.5 Heterogeneity analyses using both conventional linear regression

and Causal Forests suggest that students from economically disadvantaged families benefited more

than their advantaged peers from that personalized advising.

By analyzing college choice behaviors using the unique data on students’ college applications,

I found that machine learning advising nudged the treated students to be more likely to correctly

predict college admissions probabilities and act on these predictions. As the advising program

only focused on improving students’ abilities of making accurate predictions of college admissions,

students in the machine learning intervention group increased college access and match without

changing their preferences for college attributes and major choices.

To further understand how human expertise machine learning algorithms improved college-

choice decisions, I decoded the “machine learning black box” using an incentivized survey experi-

ment. Among a nationwide sample of 2,542 Chinese high school graduates in 2020, participants

were asked to submit college applications for the same hypothetical applicant, whose admissions

outcomes was determined using the actual college admissions results one month later. I randomly

provided students with different access to various machine learning elements, including human

expertise in college choice, data, and machine learning prediction information.

Results were consistent with those in the real-world field experiment. Similar to the null

effect of the “business as usual” advising, access to the human expertise regarding college choice

strategies did not improve college choice behaviors and outcomes. However, the combination of

human expertise and data largely improved college choice quality and admissions results, which

demonstrated that the estimated positive effects of machine learning-assisted personalized advising

on college access and match was not a coincidence. Additionally, the result that the pre-registered

“AI reference” application portfolio beat all the 2,542 participants suggested that machine learning

has the potential to support human decisions in complex optimization problems.

This paper makes several contributions to the literature and policymaking. First, this paper

5With a sample of 39,772 students in three application periods, Arteaga et al. (2021) find a treatment-on-the-treated
effect of 0.1 s.d. on test score value added from providing students with live feedback on assignment probabilities in
centralize college admissions.
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provides new, compelling evidence of that a behaviorally-designed, intensive intervention using a

combination of customized information and personalized assistance substantially improves stu-

dents’ college choice behaviors (particularly, their use of prediction strategies) and thus their college

access and match outcomes. The intervention design in the Bright Future of China Project-Ningxia

builds on and expands many prominent approaches in the literature, particularly personalized

advising/counseling (Bettinger et al., 2012; Castleman, Owen and Page, 2015; Carruthers and

Fox, 2016; Carrell and Sacerdote, 2017; Oreopoulos, Brown and Lavecchia, 2017; Page et al., 2017;

Castleman and Goodman, 2018; Evans and Boatman, 2019).6 While recent interventions aiming

to influence students’ college lists were ineffective (Phillips and Reber, 2019; Fesler, 2020), this

paper shows the importance of providing structural, data-based guidance in helping students make

accurate predictions and improved college choices. Moreover, I also show that taking sufficient time

to form a thoughtful college choice plan improves students’ college access and match. This finding

suggests that nudging students to “think slowly” may have desirable behavioral consequences

(Kahneman, 2011; Heller et al., 2017).

Second, this paper fills the literature gap of limited evidence on college-going interventions

from centralized admissions systems, or broadly K-12 and higher education centralized admissions

systems. Existing literature concentrates on the higher education markets in the U.S. and Canada;

see summaries in White House (2014); Page and Scott-Clayton (2016); French and Oreopoulos

(2017); J-PAL (2018). We know relatively little about how personalized advising works in central-

ized systems (Dinkelman and Martínez A, 2014; Hastings, Neilson and Zimmerman, 2018; Peter,

Spiess and Zambre, 2018). This paper provides new evidence on the impact of college application

assistance from the largest centralized college admissions market in the world. Centralized admis-

sion is widespread across countries in both K-12 and higher education (Neilson, 2019).7 Centralized

admission systems streamline and simply the application process; however, they require strategic

decision-making that creates a barrier for many students. A recent study by Arteaga et al. (2021)

6I also considered other light-touch informational interventions, but most of them were not suitable in the centralized
admissions context. Bird et al. (2021) show that these light-touch interventions, though successful in small scale projects,
may not be effective at scale in the U.S. higher education context.

7In countries like Brazil, Chile, China, Germany, Greece, India, South Korea, Turkey, and the United Kingdom,
college admissions operate through national exams and a centralized application and admission system. Many American
colleges are starting to use the Common Application, a platform through which students may submit the same application
to as many colleges and universities as they like. Many K-12 school admissions are centralized, such as in Amsterdam,
Boston, Paris, and New York (Hafalir et al., 2018), as well as in all Chinese cities. In a recent discussion, Goodman and
Rucinski (2018) propose a centralized testing and admission policy for Boston’s exam schools that assigns students
based on universally-taken test scores would largely increase the number of Black and Hispanic students in the exam
schools. In the centralized K-12 school choice in New Haven, CT, Kapor, Neilson and Zimmerman (2020) find that a
large proportion of families make incorrect predictions of school assignment probabilities.
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shows that providing application feedback information improves school and college choices. The

effective intervention described in this paper supports students, especially disadvantaged students,

in the search and selection of colleges to apply to.

Third, this paper casts important implications on the scale-up of social policy programs.

Personalized advising is effective in improving college access and match, but they are not easily

scalable. Existing intensive college counseling studies have only covered a small number of students.

For example, Carrell and Sacerdote (2017) provide a college coaching/mentoring program at the

cost of $300 per student, but the program has only 871 treated students in six high school graduation

cohorts. Oreopoulos, Brown and Lavecchia (2017) evaluate the Pathways to Education Program in

Canada that has served only 1,274 students in 8 years. This paper proposes and tests a new intensive

margin solution to increasing the labor supply of college choice “human expertise” services, which

may be applied in addressing many other policy problems. Bird et al. (2021) provided FAFSA

nudge campaigns, including college advising, various information contents and delivery method,

and numerous reminders, at scale to 800,000 students, but found no effects. One possibly is that

the generic, less personalized nudges are difficult to change student behaviors. Scaling up more

intensive, individualized interventions would matter for student behaviors and outcomes.

Fourth, this paper contributes to the recent literature on applying machine learning to

prediction policy problems (Kleinberg et al., 2015; Mullainathan and Spiess, 2017). When past data

are available to learn from, the link between predictions and decisions is clear, and expertise in

understanding the decision process is applied, machine learning algorithms show considerable

potential for improving predictions and productivity (Chalfin et al., 2016; Kleinberg et al., 2017).8

Data-based decision-making has been rapidly growing in both K-12 and higher education, such as

computer/technology-assisted instruction (Muralidharan, Singh and Ganimian, 2018; Taylor, 2018),

digital tutoring (Burch, Good and Heinrich, 2016), learning analytics (Daniel, 2015), and predicting

college application, enrollment, and success (González and DesJardins, 2002; Herzog, 2006; Acharya

and Sinha, 2014; Aulck et al., 2016). In a study of technology-based college coaching using online

exercises and text and email messaging, Oreopoulos and Petronijevic (2018) find no effects of

the technology-based intervention and conclude that “future technology-based interventions

8Machine learning is not a master key to all policy prediction problems without human expertise in understanding
the problems. For example, McKenzie and Sansone (2017) study the prediction of outcomes for entrants in a business
plan competition in Nigeria and find that machine learning methods do not offer noticeable improvements. The main
reason is that the overall predictive power of both human judges and prediction models is very low, which means the
key variables of the decision-making are not being measured. Bird et al. (2020) observe similarly high levels of model
accuracy between the simplest and most complex models in predicting community college student outcomes.
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should aim to provide proactive, personalized, and regular support.” Machine learning or data-

based prediction has the potential to offer personalized assistance, perhaps better than human

experts. Lechner and Smith (2007) examine the efficacy of caseworkers in allocating individuals to

government programs, and find that statistical treatment rules do substantially better. Burkhardt

et al. (2018) find that medical school enrollment predictions using the enrollment management

model were at least as accurate as the expert human estimates, and in specific populations of

interest more accurate. Mulhern (2021) finds that personalized admissions information largely shifts

students’ college choices. This paper adds experimental evidence on the effectiveness of machine

learning for improving prediction and advising in the college-going behavioral interventions.

2 Background

2.1 Why Do Centralized Admissions Need (More) Accurate Predictions?

College choice, whether and where to go to college, is one of the highest stakes decisions in

life. Each year, millions of high school graduates all around the world make their college choices

through either a decentralized system or a centralized system with national college entrance exams

(Neilson, 2019). Recent college-going intervention literature focuses on decentralized college

admissions systems and suggests that relatively inexpensive information provision and application

process simplification can substantially improve college access and match. These two policy levers

have already been institutionalized in the centralized systems.9 The centralized system largely

simplifies the application process: after taking the national entrance exam, students only need to

submit a rank-order application list of colleges and majors.

However, students in centralized systems still face behavioral barriers in constructing their

rank-order application portfolios. In particular, as noted by Lavecchia, Liu and Oreopoulos (2016),

students may make mistakes with too little information or with too many options. The college

choice model assumes that students make their optimal choices by comparing the benefit-cost

tradeoffs between college and major options (e.g., Manski and Wise, 1983; Kane, 1999; Long,

2004; Perna, 2006; Jacob, McCall and Stange, 2018). One the one hand, lack of information,

9The centralized admission mechanism, considered to improve efficiency, welfare and match (Gale and Shapley,
1962, Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003), has long been adopted in many markets, including
college admissions in many countries and in some U.S. K-12 school choices (Abdulkadiroğlu, Pathak and Roth, 2005;
Pathak and Sönmez, 2013; Machado and Szerman, 2017). For example, while there is a growing literature documenting
that mandatory entrance exam and automatic score sending in decentralized systems (particularly in the U.S.) improve
college access and enrollment (Klasik, 2013; Bulman, 2015; Hurwitz et al., 2015; Pallais, 2015; Goodman, 2016; Hyman,
2017; Hurwitz et al., 2017), centralized admissions systems eliminate the barriers in testing for students.
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misinformation, or unawareness about college features – cost, return, curriculum, major, and

special programs – and admissions policies makes it impossible for students to correctly compare

the tradeoffs. Smith, Pender and Howell (2013) and Dillon and Smith (2017) suggest that students

who have better access to information on college options and the college going process (e.g., from

parents, networks, and schools) are less likely to undermatch.

On the other hand, students may also have the overchoice problem when facing too many

options. Students may have limited cognitive capacity and attention when evaluating a large

number of choices and identifying the best fit options, for example, identifying a short list of reach,

peer, and safety colleges from thousands of colleges with multidimensional information. Kapor,

Neilson and Zimmerman (2020) and Arteaga et al. (2021) show that applicants often have biased

beliefs about the admissions probabilities when applying to K-12 schools or colleges in centralized

admissions systems. Mistakes in the predictions result in large risks of non-placement or being

admitted to less desirable options.

A wise college choice strategy is a function of students’ test scores, their preferences and

valuations for each college, their predicted admission probability, and other individual idiosyncratic

factors. In centralized admissions, the admission result is solely based on a student’s rank-order

list and entrance exam score. It is then critical for students to thoughtfully select a smaller number

of colleges from the available options to apply to and rank them in an order that maximizes

their expected outcomes. Similar to the expert’s advice in decentralized systems as described

by Hoxby and Avery (2013), applying to a mix of reach, peer, and safety colleges and ranking

them in an ascending order of predicted admissions probabilities is also an appropriate strategy to

maximizing the chances of being admitted to higher-quality colleges while minimizing the risks

of non-placement.10 To construct such a portfolio, students need to make an accurate prediction

of the admission probability for every considered college, which requires an understanding of

the admissions mechanism, decision-making skills, and the use of historical admissions data for

predictive analytics.

Several common institutional features and barriers in centralized admissions systems em-

phasize the role of accurate prediction and strategic application. First, admissions are often

implemented using an application list with a restricted length in many real-world examples (Ar-

10There are large income and racial gaps in this college application strategy. In the U.S., Hoxby and Avery (2013) find
that, while high-income students generally follow expert’s advice to apply to a mix of reach, peer, and safety colleges,
the vast majority of low-income high achievers do not apply to any selective colleges. Loyalka, Wu and Ye (2017) and
Campbell et al. (2021) find similar results in China and the U.K.
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slan, 2018; Chen and Kesten, 2017). For example, students in Ningxia (the study sample of the first

field experiment in this paper) could only apply to four selective colleges and six majors within

each college.11 Under the Deferred Acceptance mechanism, but with restrictions on the application,

truthful revelation of preferences is no longer a good strategy. Second, many centralized matching

systems only match subjects (e.g., students) to at most one option, which imposes a high risk of all

applications being rejected when students aim too high. Students have to evaluate the admission

probability for each college based on admissions outcomes (cutoff or median scores) in prior years.

Third, students must rank their applications in order. Without accurate information about college

quality (or other individual preferences), and without precise predictions of admission probabil-

ities, students may make mistakes in ordering, e.g., listing a safety college at the first choice, or

listing a reach college at the last choice (Kapor, Neilson and Zimmerman, 2020). Lastly, centralized

admissions may operate in a very short period of time.12 In order to conduct a thorough search

and assess college fit, students have to very efficiently search for and analyze a large volume of

college/major information (thousands of colleges) from sources.

2.2 Context

Chinese college admissions. This paper studies college applications and admissions in the

Chinese province-level centralized college admissions system. At the end of high school, students

take the annual College Entrance Exam (CEE). Students then compete with peer applicants within

the same province and STEM/non-STEM track for college-major spots that are predetermined by

each college across the country.13 Students submit their college application lists (typically 4-10

colleges in each institutional tier, 4-6 majors for each college, varying by provinces and institutional

tiers) in the Department of Education online system.14 Admission is solely determined by students’

CEE scores and their college-major applications. Each student is matched with at most one college-

11Even in decentralized systems where students could potentially apply to as many colleges as they want, costly
applications (e.g., a complex process and application fees that limit the number of applications) require students to apply
in a sophisticated way when choosing their final applications.

12Most Chinese students only start to seriously think about college choice after they know their CEE scores. They
only have three to five days to submit college applications.

13Students choose one of the two tracks one or two years before taking CEE. They take four subjects: Mathematics,
Chinese, English, and track composite. The STEM track composite includes physics, chemistry, and biology. The
non-STEM composite includes history, social studies, and geography.

14College application and admission proceeds by institutional tiers and students’ eligibility for applying to different
tiers is determined by their CEE ranking percentile, e.g., Tier 1 includes the nation’s elite colleges and only the top 10%
to 20% students can apply to. All of the relevant information, including college admissions results in prior years, and
information about tuition, location, and quota are publicly provided to students by the Department of Education. I show
and explain a typical Chinese college application form in Subsection C.1.
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major through a parallel mechanism (like the Deferred Acceptance mechanism, as discussed in

Chen and Kesten, 2017). Students who decline the admission offer or are not admitted to any

college have the options to retake the CEE in the next year, move onto the labor market, or seek to

study abroad.

As discussed in the previous subsection, Chinese students also need to strategize on the

basis of predicted college admissions probabilities. Similar to the expert advice as described by

Hoxby and Avery (2013), they could apply to a set of reach, match, and safety colleges to maximize

their admissions opportunities by a reach or match college, and to minimize their chances of being

rejected by all of the colleges to which they have applied. Since college admission is uncertain

and risky - with a limited number of choices and each student admitted to at most one college -

students must “game” the college application strategically with accurate predictions. Additionally,

students have to choose college and major simultaneously. The match process is college-then-major,

which perplexes the college choice decision-making process, even though the application process

itself is simple and most information is available to all the students.

Setting and data. Through the research-policy partnerships with the Ningxia Department

of Education and the Ningxia Education Examination Board, the provincial centralized adminis-

tration office of the College Entrance Exam and college admissions, I collected the student-level

administrative data for the universe of the 2017 high school graduation cohort in Ningxia province.

Figure A.2 shows the geographic location of Ningxia - one of the lowest income provinces located

in northwestern China. Using data of the entire population of applicants in a college-student

matching market enables me to identify students’ college application behaviors (strategies and

preferences), admissions outcomes, and enrollment decisions.

The confidential student-level data include student demographics and high school attendance

records, CEE scores, full rank-order applications data, and admissions results. I discovered and

cleaned a new dataset of the college application submission time, which I used to analyze the

intervention’s effects on the timing of applications. I also constructed detailed student-college-

major-choice level data (over 1 billion observations) to develop the machine learning algorithms

that predict the admission probability of every college-major option in each possible application

rank order for each student.

I merged the college-major level information, consisting of address, tuition, quota, prior-year

admissions scores, with the student-level data in order to study their college choice strategies and

preferences. The college-major level information was the same as that provided to students during
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the college application period by the Ningxia Department of Education in printed books.15 I used

student level and college-major level data to create a family of measures of college access and

match outcomes, as well as college choice behaviors. I also obtained additionally college-major

data (e.g., national college rankings and track-tier admissions cutoff scores) from external sources.

2.3 Motivating Evidence on the Importance of College Choice Strategies

Following the undermatch literature (e.g., Hoxby and Avery, 2013; Smith, Pender and Howell,

2013; Dillon and Smith, 2017) and my previous work (Ye, 2020), I constructed an index of student-

college academic match using principal-component analysis of five college quality measures,

including college admissions scores in Ningxia in 2017 (median, mean, minimum) and national

college quality measures (standardized score and ranking percentile).16 In centralized admissions,

the between-group difference in college undermatch is solely due to college choice behaviors when

controlling for CEE scores.

To illustrate the importance of college choice strategies, I first identify the poverty gap in

college match using the following linear model:

Yi = β0 + β1 ∗ Rurali + γ ∗ Xi + ε i (1)

where β1 measures the rural-urban gap in the college match outcomes Yi, holding individual

covariates Xi (CEE score, demographics) equal. Given the limitation of the administrative data, I

used rural hukou (household registration, the primary source of income inequality in China) as a

proxy for poverty.17

Low-income students from rural families are much more likely to undermatch compared with

their higher income peers. Using the sample of students who submitted their college applications

and were not in the treatment groups in 2017, Column 3 of Table 1 shows that rural students are

admitted to a college with 0.107 standard deviations (p<0.001) lower quality than urban students

with the same CEE scores and demographic characteristics.18 Since students in the same high school

15The necessary information is available to all students. But the delivery using printed books imposes high search
and analytical costs for students to make optimal choices and decisions.

16Using college admissions data from 1996-2017 and administrative data on institutional resources for every college
in China, we build a national college ranking of all Chinese colleges, which is now published at siminedu.com to assist
all Chinese high school graduates in their college choices.

17Note that Ningxia is one of the poorest provinces in China but there still exists large poverty gaps within Ningxia.
Results are qualitatively identical when using other measures of family income or disadvantaged background, e.g.,
female or minority.

18Table B.1 shows that, including those who did not apply to any college (and were assigned the track-tier lowest
admission score), the raw rural-urban gap in the college match index is -0.134 standard deviations. Rural students end
up with colleges on average 0.149 s.d. lower quality when controlling for CEE score and demographics. Female and

10

https://siminedu.com/#/rank


may share the information and support from the school, controlling for high school fixed effects

reduces more than one-third of the gap (β1=-0.063 in column 7). However, the sizable rural-urban

gap in college match persists and is attributable to students’ different college choice behaviors.19

I next predict admissions outcomes based on college choice behaviors. I constructed a

series measures of strategies and preferences using students’ full applications data. Appendix

Subsection C.1 provides a detailed description of these measures and underlying behavioral

rationales. I add the six principal-component indices (standardized) stepwise to Model (1). Data-

based targeting strategies are the core of college application expertise, which enables students to

make accurate predictions of admissions chances and to apply for a targeted set of reach, match,

and safety colleges, as well as rank them in an appropriate order in the application list.

The first two columns of Table 1 show the sample means of each college choice behavior

index. Rural students are less likely than urban students to use the targeting strategy and follow the

general advice (e.g., fill in all the major applications within each college). Moreover, rural students

prefer colleges with lower tuitions and larger admissions quotas, and in-province colleges that

would limit other high-quality college opportunities (Hillman, 2016; Ovink et al., 2018).

Column (4) shows that a one standard deviation increase in the use of the prediction-based

targeting strategies is statistically significantly correlated with a 0.2 s.d. increase in the quality of

the admitted college. The correlation is stable when controlling for other college choice measures

in column (6). The other measures are also correlated with admissions outcomes, but in much

smaller magnitudes. Comparing the changes in the rural-urban gap (β1), I find clear evidence

that prediction-based targeting strategies explain the largest proportion of the variation in the

outcome (40 percent), controlling for CEE score and demographics. This result remains unchanged

when I control for school fixed effects in column (10). Targeting strategies explain about half of the

rural-urban gap in college match.20

Overall, as displayed in columns (6) and (10), if rural students have the same college choice

behaviors as urban students, the rural-urban gap reduces by more than 60 percent.21 The use of

targeting strategies requires human expertise in understanding admissions mechanisms as well

minority students are also more likely to undermatch, while repeaters are better matched than first-time exam takers.
19All the high schools, located in urban districts, have a mix body of students from rural or urban families. Controlling

for class fixed effects or neighborhood fixed effects does not change the results once we control for school effects.
20Results from Oaxaca-Blinder decompositions show that targeting strategies explain more than 80% of the rural-

urban gap in college match that is explained by all the six college choice behavior measures.
21We should note that the six behavior measures included in the analyses do not fully capture a student’s college

choice strategies and preferences. Furthermore, the “optimal” application plan is not based on a single indicator, but a
compound of a variety of strategies and preferences. Identifying an optimal college application plan is still an open
question for future research.
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as sophisticated data analytics. The key component of these targeting strategies is to accurately

predict college admissions probabilities. I now turn to the randomized experimental design to

examine the effectiveness of using machine learning predictions to improve the efficiency of expert

personalized advising for college match.

3 Experimental design

3.1 Using Machine Learning to Improve Personalized Advising Efficiency

As part of the Bright Future of China Project, I designed a structured guide to help students

who lack information or guidance to navigate the college application process. I conducted a pilot

experiment in 2016 that provided proof-of-concept evidence that information and guidance about

predicting admissions probabilities improve students’ college choice behaviors and admissions

outcomes (Ye, 2020). In particular, personalized advising provided by expert advisers effectively

guided students make accurate predictions of admissions chances using a sequence of data analyses.

However, performing such data analyses is labor-intensive and time-consuming, which limits the

potential to scale up the personalized advising program.

I propose to use machine learning predictions to help the advisers provide personalized

advising more efficiently and effectively. Given the solid evidence that an effective college choice

advising relates to making accurate predictions, machine learning algorithms can reduce the time

that an expert adviser needs to serve each individual student by providing automatic data analytics

and predictions results. Machine learning algorithms mirror the predictions that a skillful expert or

student would make in the college choice process; that is, learning from a history of past admissions

outcomes to predict the admissions outcome at each college.

Predicting college admissions is core of the personalized advising program. An expert or a

student’s subjective prediction is often imprecise, yet still useful when qualitatively correct. For

example, we may use a single criterion such as the five-percentile bandwidth to define reach,

match and safety colleges (Hoxby and Avery, 2013). Using machine learning algorithms, one can

predict the admissions probability of each college using multi-dimensional factors such as different

measures of admissions scores, quotas, and college/major features. Even two safety colleges can

differ substantially in their actual ex ante admission probabilities. When machine learning excels at

precisely predicting objective admissions probabilities more than the human instruction approach,

why not use it for better decisions?

12



Training the prediction model. Machine learning was used as a “black box” methodology

that provides the prediction outcomes for the personalized advising program. I used the unusual

complete data on student applications in a whole college matching market, thanks to our long-

standing research-practice partnership with the Ningxia Department of Education. I then applied

machine learning algorithms to generate precise predictions for each student for each college:

notably, each type of students with the same CEE score, gender, and race (gender and race may

affect eligibility for special programs or majors). Because of the detailed application data, I can

even predict the admissions probability for each student at each college-major option of every rank

order in the application list.22

When a skillful expert or student makes her “human predictions,” it is difficult to consider

many factors simultaneously, such as minimum/maximum/median/mean admissions scores of

a college in the past few years. All of these “human predictions” are subjective approximations

(e.g., reach vs. safety, or unlikely vs. likely). This problem is much simplified in a machine learning

algorithm. Similar to Kleinberg et al. (2017), I provided “the machine” with a set of student-college-

major-order level data from the 2016 cohort, each observation consisted of a set of input features,

including admissions scores and corresponding ranking, quota, order, student’s CEE score, as

well as an outcome (admission=1) to be predicted. I then chose a prediction model (algorithm) to

minimize the loss function that generates accurate out-of-sample predictions. I used Random Forest,

one of the most commonly used supervised learning algorithms, which builds on a collection of

decision trees to generate the predictions.23 Figure A.3 shows feature importance for predictions.

As expected, a student’s ranking within the province-track (paiming, like an equated CEE score),

her normalized CEE score (normalized_zongfen), and the rank order of the applications (zyno) carry

the largest importance shares. A student’s subject scores and a college’s admissions scores in the

previous year are also correlated with the predicted admissions, while other features are not that

important. To avoid over-fitting, I randomly partitioned the data into an 80% training set and a 20%

test set. Cross-validation shows that the prediction accuracy was 94.3% (95% confidence interval:

94%, 94.5%; suggesting a high accuracy) with a sensitivity of 83.4% and a specificity of 98%.24 Since

22In other cases, when we do not have such detailed data, using admissions scores, which are publicly available
to students when they apply to college, still generates relatively precise predictions. Without a more sophisticated
algorithm to help students evaluate the expected returns and risks of placing a college-major at different rank orders, the
small difference of listing a college-major at different orders does not have large impacts on the predicted admissions.

23Assessing the performance of different machine learning algorithms vs. human instruction on the same set of
students and applications is out of the scope of this paper. Subsection C.3 provides descriptions of model comparisons
from a companion project.

24Sensitivity and specificity (and accuracy) are common characteristics of the model prediction performance. Sensitiv-
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the goal of prediction is college admission, the model is conservative in predicting the admissions

among students’ reach colleges.

3.2 The Intervention: Machine Learning-Assisted Personalized Advising

The machine learning-assisted advising. In the field, the intervention provided to treated

students was machine learning-assisted online personalized advising, which followed the pure

human advising program in 2016. Expert advisers guided students in three main procedures:

(1) providing a comprehensive and reliable guide to help them search for college and major

information; (2) using data analysis to compare a short list of colleges and majors by identifying

college types based on predicted admissions probabilities; and (3) instructing the strategies to

make optimal college choice decisions. The ultimate goal was to help students make accurate

predictions of admissions chances and to select several targeted colleges out of more than 3,000

colleges. Subsection C.2 provides detailed descriptions of the personalized advising.

The personalized advising program was implemented using WeChat, the most popular

message App in China. Two expert advisers were assisted with machine learning predictions and

two additional data reports. First, the adviser used a program to automatically equate CEE scores

for students, which was done manually in 2016. The adviser also provided treated students a short

list of reach, match, and safety colleges, which aimed to reduce a student’s search cost. Figure 1

compares the manual data analysis in the traditional advising with the automatic data report. This

step reduced advising time from hours to seconds.

Next, the adviser asked treated students to provide a rank ordered list of colleges and majors

that they considered applying to. The adviser then returned the predicted probabilities of each

college-major in the candidate list. Figure 2 present screen shots of the interface that the adviser

used during the personalized advising. Figure A.4 shows the conversations between the adviser

and the student through the online message App. Students picked their final application lists

consisting of a group of reach, peer, and safety colleges based on individual preferences and

completed their applications.

This intervention design combined human expertise and algorithmic judgment in order to

minimize potential errors and to make the best possible college application. During the advising,

the main task of the experts was to help students check and fine-tune their candidate list. The

ity is the proportion of observed college admissions that were predicted to be admitted by the model, and specificity is
the proportion of observed college rejections that were predicted to be rejected.
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majority of the conventional advising in 2016 was then replaced by machine learning (and Stata)

prediction results in 2017. The advising productivity was greatly improved. Furthermore, as

students might have heterogeneous preferences for college attributes and majors, the advising

program was designed to improve students’ college applications without altering their preferences.

The “business as usual” lighter-touch advising. I also developed a “business as usual”

intervention, serving as a placebo test. I was interested in the following question: In the absence

of this personalized advising, what for-profit consulting services would a student probably have

access to? Between 2016 and 2017, I reviewed dozens of Chinese companies that were selling

college application consulting services at a price range between 100 RMB and 500 RMB ($15-$80).25

Excluding the obviously incorrect “application strategies,” I kept a brief list of mostly harmless

college application advice guidelines, which can be seen as a simplified, lighter-touch version

of the college choice guidebook in 2016 (Ye, 2020). These tips were then provided to students in

the “business as usual” group. A group of research assistants (not expert advisors) also answered

generic questions. In many cases, students were directed to other online resources for further

information. Research assistants did not answer any personalized questions about CEE score

equating, short lists of colleges, or application planning.

3.3 A Student-Level Randomized Experiment

I conducted a large-scale randomized experiment in Ningxia to test the effectiveness of the

machine learning-assisted personalized advising. The sample included the universe of Ningxia

high school graduates who took the College Entrance Exam in 2017. I implemented student-level

stratified randomization to increase statistical power. Using student information from the College

Entrance Exam Registration Data, I generated randomization strata by school, track, gender, race,

rural hukou, county of residence, and achievement. I classified high-achieving students using

test score in the low-stakes graduation exam as the CEE score was not available at the time of

randomization. Students who ranked above the 75th percentile in the high school graduation test -

held in the fall semester of senior year - were classified as high-achieving students.

As shown in Figure A.1, students were randomly assigned into one of the three groups: (1)

5,647 students were provided access to the machine learning-assisted personalized advising; (2)

5,370 students were provided access to the “business as usual” advising; and (3) the remaining

25There were also more expensive personalized services charging thousands or tens of thousands RMB. But it is rare
for students in the poorest regions to pay that much money.
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43,038 students served as the control group. Since targeting strategies may be more useful for

high-achieving students (Tier 3 and Tier 4 colleges are not selective), I disproportionately (within

randomization strata) assigned more high-achieving students to the machine learning advising

group (45%; 28% in the “business as usual” group).

Implementation. When the CEE score report became available online and students could

start to apply to college on June 21, the Ningxia Department of Education sent a text message to

every student using the cellphone numbers from students’ CEE registration records.26 Immediately

after that message, the Ningxia Department of Education sent another message to students in the

two treatment groups, introducing the personalized advising opportunities provided by experts

from Peking University and Ningxia University. Students were encouraged to contact the advisors

using the online chat App. The text message was the same for the two intervention groups except

for the contact information.27 The research assistants verified each student’s ID information and

asked each student to complete a short online survey. Students were then directed to either a

“machine learning” individual chat group or a “business as usual” individual chat group. Each

chat group had three members: the treated student, one of the two expert advisors (an research

assistant in the “business as usual” group), and an administrative assistant.

The machine learning-assisted personalized advising proceeded using three data analysis

steps as described in Section 3.2. Students were provided with (1) automatic CEE score equating,

(2) a short list of colleges, and (3) the predicted admissions probabilities of the colleges and majors

they considered to apply to. The main task of the expert advisor was to help students check and

fine-tune their candidate lists, and to provide more detailed guidance on specific questions. Most

students kept in touch with inquiries and questions until they submitted their applications, and

many of them informed us of their admissions results in July and August.

Interactions and conversations between the research assistant and the student in the “business

as usual” advising were less frequent and much shorter than those in 2016 personalized advising

program (Ye, 2020) and in the “machine learning” program. Students were provided with general

guidelines and information about college applications. For example, students were provided

explanations about the admissions mechanisms and they were suggested to apply to a mix of

different types of colleges. However, the “business as usual” advising did not provide any detailed

26All the students should register a cellphone number of their own or parents’ cell phone. All the official notifications
and information from the Department of Education are communicated using the registered cell phone number.

27For better coordination, we had five user account numbers, three for the machine learning group and two for the
“business as usual” group.
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or personalized information about identifying and choosing specific reach, peer, and safety colleges

nor how to place them in different orders. Students had to implement these strategies and make

predictions on their own.

Summary statistics and validity. Table B.2 shows that student characteristics are well-

balanced across groups given the student-level randomization. About 57% of students were

from rural families; 32% were minorities; and more than 23% had repeated the 12th grade at

least once. Compared with those who did not take the College Entrance Exam, this was a highly

selected sample of “lucky” students who had overcome all the barriers from birth to grade 12.28 Of

this sample, 90% submitted college applications and 84% were admitted to college. Because the

intervention randomization was independent of that for a parallel teacher intervention, there were

836 treated students in treated teachers’ classes. Balance checks were still valid when excluding

those overlapped students. Table B.3 confirms that student characteristics have statistically zero

prediction power for the treatment status. All the joint F tests are statistically insignificant.

4 Results

4.1 Empirical Approach

To estimate the causal impact of the advising interventions - “machine learning” and “busi-

ness as usual” - on college choice behaviors and admissions outcomes, I estimate an intent-to-treat

effects (ITT) linear regression:

Yi = β0 + β1 ∗ T1(Machine learning)i + β2 ∗ T2(Business as usual)i + Xi ∗ γ + δs + ε i (2)

where Yi is the outcome of interest for student i. T1i and T2i are indicator variables for student

i receiving the text message invitations to the two advising groups (assignment to treatments),

respectively. δs are strata fixed effects. All standard errors are clustered at the school level. I report

joint test results for the two interventions, and test for the difference between the two: specifically, I

test H0 : β1 = β2.

Xi includes a student’s CEE score to identify the “college choice” effect. In centralized

systems, college admissions are jointly determined by a student’s entrance exam score and her

choice. Controlling for the entrance exam score in Xi, β1 and β2 estimates the treatment effects on a

student’s college access and match, through the impacts on her college choices. While treatment and

28Nationally, only about 40% of a birth cohort (18 million students) reach the stage of college application.
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control groups are well balanced in student demographics because of the stratified randomization

(as shown in Table B.2 and Table B.3), Xi also controls for a vector demographics (gender, race, age,

rural, track, repeater from the prior years) in the preferred specification to increase the statistical

power and to reduce potential biasedness of effect size estimation. As expected, the results do not

change if I exclude those student-level covariates.

Model (2) identifies the impacts of being offered access to receive personalized advising in college

choice and application. I also estimate the treatment-on-the-treated effects (TOT) using a 2SLS

regression, which measure the average effect of receiving the personalized advising on those who

actually receive it. The first-stage regression examines the take-up of the two advising interventions:

Treated in T1i =β0 + β1 ∗ T1i + β2 ∗ T2i + Xi ∗ γ + δs + ε i

Treated in T2i =β0 + β1 ∗ T1i + β2 ∗ T2i + Xi ∗ γ + δs + ε i

(3)

I then estimate TOT, the impacts of the exogenously-instrumented intervention participation

( ̂Treated in T1i and ̂Treated in T2) on outcomes:

Yi = β0 + β1 ∗ ̂Treated in T1i + β2 ∗ ̂Treated in T2i + Xi ∗ γ + δs + ε i (4)

where the other specification issues are the same as in Model (2). ITT effects show the overall effects

that we could expect if the program implementation is similar to what I did in 2017 when the

take-up was low. TOT effects identify the potential intervention effects if we provide the machine

learning assisted advising with stable program productivity to all, and all students take up their

opportunities.29

I examine the primary college admissions outcomes as will be described in the following

section, which include both extensive and intensive margins, because the interventions are primarily

designed to improve college access and match. I also examine a list of exploratory measures of

college choice behaviors. These measures are from the same domain and highly correlate with

each other, so that the multiple hypothesis testing problem is minimal. Furthermore, I use the

aggregated indices of each group of outcomes from a principal-component analysis. Additionally, I

apply the method proposed by List, Shaikh and Xu (2016) to check the robustness of the results.

29This simple interpretation assumes that the average treatment effect is the identical to the average treatment effect
on the treated, which is possible if students fully follow the machine learning based recommendations.
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4.2 First stage results: Intervention Take-up

Table 2 reports the first stage regression results from Model (3), separately for the two advising

interventions: machine learning assisted advising and “business as usual” advising. Column (1)

shows that, on average, 3.6 percent of students (210 out of 5,647) who were provided the machine

learning advising invitations eventually received the personalized assistance.30 Column (5) shows

that on average, 2.4 percent of students (134 out of 5,370) who were provided the “business as usual”

advising invitations eventually received the low-touch personalized assistance. As expected, the

results do not change when controlling for student-level covariates or the two random assignment

indicators (T1 and T2) simultaneously. Columns (3) and (7) show that the parallel teacher incentives

program did not impact the take-up rate. High-achieving students had slightly higher take-up

(4.93% in T1 and 4.14% in T2; Chow test p-value = 0.209, which indicates no statistically significantly

different take-up between the two groups). F statistics reject the null that the random assignment is

a weak instrument for the actual take-up.

The take-up rate is somewhat surprisingly low, but higher than that in 2016 (1.5%). When

designing the interventions, I planned for an expected take-up rate of 20% and prepared accordingly

a team of expert advisers; thus I did not provide the conventional expert advising. One reason

for this low take-up is the verification process (Alatas et al., 2016).31 For the research purpose of

identifying the treated students, student exam IDs and school IDs were used to verify and screen

the targeted students. That is, I purposely denied most of the would-be always-takers from the

control group. We also asked treated students to complete a 10-minute survey before the expert

advisor provided advising services. As Hoxby and Turner (2013) suggest, students and parents

may often be suspicious of this verification process, even though we only asked for their exam

ID and school ID that could not be personally identified without the administrative data from

the Department of Education. Over 1,800 users (students or parents) added the contact accounts

as friends, accounting for 16 percent of the randomly assigned treated students (assuming few

non-compliers). However, we finally provided college application advising to 347 high school

graduates in Ningxia in the 2017 program. While this low take-up does not impact the internal

validity of the estimates, it results in limited statistical power (e.g., significance tests among high

30We also provided advising to 4 “always taker” students (3 in T1) during the last few days.
31The other reason may be that, although nearly all of the students need assistance, the actual demand for the

personalized advising may be still low. In 2018, I worked with collaborators to fully communicate with students about
the benefits and the process of the advising using mails. Take-up increased to 10 percent. Hyman (2019) conducted a mail-
based intervention that encouraged high-achieving high school seniors in Michigan to navigate a college information
website. Its take-up is 9.8 percent.
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achieving students) and an inability to infer the effect heterogeneities on a large scale.

4.3 Effects of Machine Learning Assisted Advising

Similar to the conventional personalized advising in the previous year, I find that the per-

sonalized advising program with the assistance of machine learning and related data analytics

substantially improved college access - admission to a college, and match - the quality of an admit-

ted college. Table 3 reports both the intent-to-treat effects (ITT) and the treatment-on-the-treated

effects (TOT).

The first column shows that the machine learning assisted advising substantially increased

students’ college access. The TOT result suggests that, controlling for CEE score, demographics,

and strata fixed effects, treated students had on average a 24.4 percentage points (pp) increase

in their probability of college admissions, statistically significant at the 0.1 level. Note that the

statistical power is limited by the low take-up. Accounting for the first-stage participation rate, the

average effects (ITT) of offering the personalized advising program increased the college admission

probability by 1 pp. This increase was from both increased application (column 2: TOT=12.8 pp,

p>0.1) and improved college choice behavior (admission conditional on application). Columns (3)

and (4) suggest that the increased admissions entirely shifted students from repeating another year

- and retaking the CEE in 2018 - to on-time college enrollment in 2017. Students chose to retake

the CEE after one year primarily because they were not satisfied with their CEE performance or

admission offers. The personalized intervention helped students consider the best possible options

conditional on their CEE scores and nudged students to enroll in college on time.

On the intensive margin, the personalized advising also substantively improved college

match, which is measured by the quality of a student’s admitted college. Column (5) of Table 3

examines the impacts on the college match index, which summarizes a family of five college quality

measures using factor analysis. On average, treated students were admitted to colleges with 0.598

standard deviations higher quality as measured by the single index, statistically significant at the

0.05 level. The corresponding ITT effect of providing access to personalized advising is 0.022 s.d.

(p<0.05). Given that college admissions are solely determined by a student’s CEE score and her

applications, the results suggest that in the counterfactual situation without receiving the machine

learning assisted advising, a treated student had to increase her CEE score by 0.598 s.d. to be

admitted to the same college. Comparing with many possible inputs in K-12 education, this paper

presents a very effective, and relatively low cost, behaviorally-designed intervention to improve
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college access and match for low-income students.

The college match index consists of both contemporaneous college admissions scores (median,

mean, minimum) and static (in the short term) national college ranking measures (standardized

score and ranking percentile). The national college quality measures were constructed using college

admissions data in all provinces from 1996-2017, as well as administrative data on institutional

resources for every college in China. I use the national measures to minimize the potential bias

of using admissions results from the same within-province cohort to denote college quality, for

example, a college with few admission quotas occasionally admitting high-achieving students. The

static measures also enable us to compare estimates across years.32

In column (6) of Table 3, I examine the impacts on the national college quality measure.

Results are similar in that the personalized advising assisted the treated students to be admitted

to colleges with a 0.77 s.d. higher quality in the national college ranking. Table B.4 presents very

consistent results using the other four itemized college match outcomes. Column (7) excludes about

10,000 students who were not admitted to any college and presents the underestimated effects

of “machine learning” (overestimates for “business as usual” effects). The point estimates remain

large (TOT=0.262 s.d.), but are not precise enough to be statistically significant. Lastly, column (8)

uses the dichotomous measure of undermatch using a cutoff score of 0.25 s.d., and shows that the

machine learning advising program reduced undermatch by 28.8 percentage points. In magnitude,

this equals the control group mean, or more than twice of the rural-urban gap.

4.4 How Did Machine Learning Work?

I designed the college application guide and advising to improve a student’s college choice

behaviors. Using the unique data on students’ full college application lists, I test whether the

improved college admissions outcomes stem from their application behavior changes. The con-

struction of the (partial) strategy and preference measures is discussed in detail in Appendix

Subsection C.1. I find compelling evidence that the machine learning advising nudged the treated

students to use the correct data-based prediction strategies to apply for match colleges.

Table 4 reports both ITT and TOT effects on college choice behaviors. Panel A summarizes

students’ applications using the prediction information and shows that treated students in the

32The college peer median/mean CEE scores are very likely to be different for the same college in 2016 and 2017
depending on its applicant pools and admissions quota, as well as the CEE score distributions. All of the three statistics
vary greatly across years. In this paper, the national college ranking data are the same for the same college in 2016 and
2017, providing a more stable measure of college quality.
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machine learning-assisted advising group applied to colleges with higher expected admissions

outcomes. Column (1) compares the ex ante quality of each student’s applied colleges, measured by

mean admissions scores in the previous years. Machine learning-assisted advising helped students

apply to higher quality colleges. While column (2) suggests that applying to those higher quality

colleges mechanically reduces average admissions probabilities, column (3) shows that there is still

a large increase in the expected admissions outcome (product of college quality and admissions

probability). The magnitude of the expected admissions outcome is close to the actual admissions

outcome as reported in column (6) of Table 3. Using the ex post admissions scores in 2017 in column

(4) yields similar results.

Panel B focuses on college choice strategies. Column (5) shows that, students who received

the machine learning-assisted advising were 30.6 percentage points (p<0.05) more likely to apply

to at least three colleges in the recommendation list, compared with that 30.5 percent of the control

group students who applied to at least three colleges in the list. The list includes all the colleges

that we ever recommended to any treated students with an estimated admission probability larger

than 35%. This result clearly demonstrates that treated students followed our advising. In contrast,

“business as usual” advising did not cause students to be more likely to apply to colleges in the list.

Column (6) uses the single principal-component factor index to summarize the effects on

college choice behaviors. The machine learning advising largely and statistically significantly (at

the 0.1 level) affected students’ college choices. The next six columns present detailed results for

each strategy and preference category (factor indices from a series of items). Results show that the

effects of machine learning advising concentrated on improving students’ targeting and general

nudge strategies in their college choices. This finding is consistent with the descriptive results in

Table 1 that these two groups of strategies are the most important factors driving college match, and

is also consistent with the focus of the individualized advising intervention design. In Table B.5,

I report the itemized results for the targeting and general nudge strategies. Results show that

the improvement was not in a few occasional measures, but was universal across the domain of

“good applications.”33 As a placebo test, the “business as usual” intervention shaped students’

applications in the opposite direction: The treated students were less likely to use the optimal

strategies based on data analytics.

Importantly, the personalized advising was designed only to improve students’ strategic

33For instance, students who received the machine learning assisted advising were much more likely to apply to
academically matched colleges, and to list colleges in the correct descending order. They were also more likely to apply
to a sufficient number of colleges and majors.
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decision-making in college choice based on accurate predictions. It should not trade student

preferences for the improvement in academic match.34 Results show that neither the “machine

learning” nor the “business as usual” interventions impacted student preferences, which confirms

that the personalized advising using machine learning predictions worked through improving

application strategies without impacting individual preferences for colleges and majors.

Why did “business as usual” not work? In stark contrast, the “business as usual” advising,

as a placebo test that mimics a generic guide on the human expertise of college choice, had a

zero or even negative impact on college admissions results. For the primary outcomes of college

access and match (columns 1 and 5), the joint equality tests reject the null hypothesis that the two

individualized advising interventions had the same effects. This finding is consistent with the

findings in Oreopoulos and Ford (2016), that decreased guidance in choosing eligible programs

would limit the effectiveness of advising programs. One reason for the possible negative impact

of “business as causal” intervention is that students may make their choices of repeating the 12th

grade based on general advice such as “repeating increases college opportunities.” In contrast,

the machine learning-assisted advising nudged students to consider all the possible good college

opportunities before deciding to repeat the 12th grade.35 This argument is supported by the results

in Table 3. The “machine learning” advising largely decreased repeating and accordingly increased

on-time college enrollment. The “business as usual” had the opposite effect. Students who received

the “business as usual” advising were more likely to repeat the 12th grade and less likely to enroll

at a college in 2017. Excluding those who were not admitted to any college, column (7) shows

that “business as usual” advising had a small and insignificant positive effect on college match.

However, this estimate was biased upward.

Thinking fast? Slow! Most of the existing literature on college-going interventions em-

phasizes nudging students to take required actions on time to meet the application deadlines. I

turn to the other aspect of time use in decision-making: haste makes waste. The seminal work by

Kahneman (2011) describes two systems of human thinking - System 1 (thinking fast), and System

2 (thinking slow). System 1 forms automatic, first impressions of decision-making without delib-

34Students had strongly motivated beliefs and preferences. A student survey in one Ningxia high school before the
CEE in 2018 (N=1,190) shows that major preference, labor market prospects, college quality and cost are the main factors
affecting students’ initial college choices.

35It is arguable whether repeating is a good strategy. Goodman, Gurantz and Smith (2020) show that retaking the SAT
improves admissions-relevant SAT scores. But Chinese students have to spend a whole year before retaking the CEE.
In this paper, I define the not on-time enrollment as undermatch because too many students make repeating decisions
without thoughtful considerations about college choices. This means that, presumably for some students it is optimal to
retake the CEE, but the number of students who actually retake the CEE is much larger.
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eration, while System 2 involves problem-solving, analytical, and critical thinking. High school

graduates may rely on their daily routine of System 1 thinking. The primary task of preparing for

the college entrance exam, particularly in China, is to help students practice as much as possible

and to train them for fast thinking during the test. Behavioral problems arise when students make

their college choices without thinking enough about their college options, resulting in not making

a good college choice.

Using the sample of untreated students, Table B.6 reports estimates from four different

strategies: (1) OLS without school fixed effects; (2) OLS with school fixed effects; (3) inverse-

probability-weighted regression adjustment; and (4) IV using the random assignment to the

two advising interventions as instrumental variables.36 Results consistently show that spending

more time making college choices is strongly positively correlated with better college access and

match. The accordingly improved college application behaviors, especially in data-based targeting

strategies, suggest that the “slow” students made a conscious effort in college choice.

The intervention design in this paper aimed to promote students’ System 2 thinking and

improve college match through effortful data-based predictions and targeting strategies. Figure A.5

shows the distribution of application time for students who were eligible to apply for selective

colleges in 2017. Students in the machine learning-assisted advising group spent more time in their

college choice decisions. In Table B.7, I formally test whether the personalized advising slowed

down students. The first column shows the average ITT effects. Machine learning, on average,

increased application time by 1 hour. The rescaled TOT effect is 27 hours (p<0.05). The effects

concentrate on rural, male, non-minority, and low-achieving students. This finding is consistent

with the results in Table B.8 that those students benefited from the machine learning assisted

advising more than others. In contrast, I find that the “business as usual” intervention decreased

students’ decision time (ITT=-0.777; TOT=-32), which is consistent with the suggestive explanation

that the brief guidelines in “business as usual” may have reduced the intrinsic motivation of

students, and may have made them less likely to form thoughtful college choices.

4.5 Comparing the effectiveness of machine learning and human instruction.

I have shown robust evidence that machine learning-assisted advising substantially improves

college access and match outcomes, through the combination of human expert instruction and

36The IV estimates violate the exclusion restrictions because the interventions should have impacted other student
behaviors in college choice as well as the time spent on navigating the online college applications. The estimates may
overstate the treatment effects, which only serve as a comparison reference.
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machine learning predictions. A final analysis is to compare the effects of the “machine learning”

approach in 2017 with the expert “human instruction” approach in 2016 in Ye (2020). Using the

estimated effects of the expert human instruction in 2016 as a benchmark, I find that the machine

learning approach had a similar impact on students’ college access and match outcomes. For

instance, the estimated effect of human instruction in 2016 on the college match outcome index is

0.210 s.d. for high achieving students. The machine learning assisted advising generates a 0.285 s.d.

effect for high achieving students and a 0.598 s.d. for all students. Using national college ranking

as a constant measure of college quality across years, both the machine learning approach and the

expert human instruction approach largely shifted students to higher ranked colleges (by about 10

to 20 percentiles).

While the intervention effect was similar using either conventional expert advising or the

machine learning assisted advising, machine learning greatly replaced human labors. There were

six expert advisers who worked relentlessly to help 119 students in 2016 . But in 2017, only two

expert advisors served 213 students. A simple calculation will show that, with the assistance of

machine learning in simplifying the data analysis process, the efficiency and productivity of human

instruction in the personalized advising program dramatically increased.37 If we incorporate

the administrative process into an online automatic system (e.g., artificial intelligence, Page and

Gehlbach, 2017), the need for administrative assistants will be largely reduced (even to zero). To

precisely quantify the increased productivity due to the introduction of machine learning remains

as an open question for future research

5 Heterogeneity Analysis: Who Benefits Most from the Personalized Advising?

I investigate the heterogeneous treatment effects in order to understand how the personalized

advising would close the socioeconomic gaps in college access and match. The classical parametric

approach is to add interactions between the treatment indicators and the conditioning variables of

interest to the linear model (2). Table B.8 reports the results for T1(Machine learning) while none

of the estimates for T2(Business as usual) are statistically and economically significant. The first

row suggests that there were no heterogeneous take-up rates across subgroups except that high

achieving students were more likely to participate in the advising program. Results show that

37The advising productivity increased more than four times with the assistance of machine learning ( = (213 students/2
counselors) - (119 students/6 counselors))/(119 students/6 counselors)). In some cases, we had a few more advisors to
help with questions. There should still be a large improvement even when we very conservatively account for the inputs
of these additional advisors.
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rural, male, non-minority, and low-achieving students benefited more from the machine learning-

assisted personalized advising. Those students were more likely to follow the machine learning

recommendations or to use targeting strategies to apply to match colleges.

However, the linear interaction model does not provide information on how these covariates

multiplicatively identify particular individuals who would benefit most from the individualized

advising. To address this question, I apply cluster-robust Causal Forests to uncover the heteroge-

neous advising treatment effects (Athey and Imbens, 2016; Wager and Athey, 2018; Athey et al.,

2019).38 Similar to nearest neighbor methods, each single regression tree of the “forest” partitions

the covariate space into small regions (leaves) and predicts the average outcome for individuals

with particular covariates in that region. Causal Forests identify the conditional average treatment

effect by aggregating a weighted average pair comparisons of neighbor observations (in small

“leaves”) from a set of trees built on random subsamples.

I grow the causal forest model using the covariates in the main effect estimation, including

female, rural, STEM track, minority, repeater, and age. CEE score and randomization strata are also

included to fit the outcome but not for building the forest.39 For honesty, I randomly split half of the

sample to build the model and the other half for estimation. Figure A.6 visualizes a single tree from

the causal forest for estimating the effects of machine learning-assisted advising (T1) on college

match index. According to the variable importance measures, STEM track (0.35), rural (0.18), and

female (0.14) are the three most often chosen variables. Results are similar for other outcomes.

Figure 3 shows the heterogeneous treatment effects of the machine learning-assisted advising

(T1) at the individual level. Results on college admissions and college match are quite consistent.

The conditional average treatment effects are similar to those estimated using the linear regressions

in Table 3: 0.02 vs. 0.01 for college admissions and 0.035 vs. 0.022 for college match index. The

majority of students would have a substantial positive effect. About one-fifth of the students

in the sample are predicted to have a negative treatment effect; however, these negative effects

are not statistically different from zero. Students with estimates of individual treatment effects

above the sample median have 4.9 percentage points (0.08 sd) larger treatment effects on college

admissions (match) than students below the median. These statistically significant differences

38Alternative machine learning approaches to estimating treatment effect heterogeneity include LASSO (Imai,
Ratkovic et al., 2013), BART (Powers et al., 2018), and neural networks (Farrell, Liang and Misra, 2018). Causal forests
method has known asymptotic properties and performs well in modeling high-dimensional nonlinear interactions
between covariates.

39Because CEE score has hundreds of potential splitting points that the tree method can be biased. Including
randomization strata fixed effects ensures the internal validity of treatment effect estimation.
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confirm the existence of treatment effect heterogeneity. Figure A.7 shows that the “business as

usual” advising (T2) does not have detectable heterogeneous treatment effects with the conditional

average treatment effects statistically indistinguishable from zero.

Table 5 summarizes individual characteristics by the quartile of treatment effects estimated

from the Causal Forests model. While there were smaller heterogeneous effects on college admis-

sions, machine learning-assisted advising was predicted to have larger effects on college match

for students from rural families. For example, 70.8% of students in the top quartile of treatment

effects were rural students but only 36.8% of students in the bottom quartile were from rural

families. Students with lower college entrance exam scores or who repeated the 12th grade were

more responsive to the personalized advising. At the individual level, the Causal Forests model

predicts that female, rural students who were in non-STEM track, non-repeater, non-minority,

and at the normal age had the largest treatment effects. In contrast, female, urban students who

were in non-STEM track, non-repeater, non-minority, and older than 19 years old had the smallest

treatment effects. The existence of heterogeneous treatment effects of the individualized advising

implies that providing access to advising is not enough to improve college-going outcomes for

all. Complementary policies and interventions should be used to influence students to take the

advising opportunities. To this goal, information about individual treatment effects will further

help future work to target particular groups of students with different intervention designs.

6 Data vs. Algorithms: Understanding How Machine Learning Predictions Improve

College Choice Decisions

This paper has so far presented compelling experimental evidence that machine learning

predictions improve college access and match. Like many real-world applications, machine learning

is only used as a “black box.” This subsection aims to decode the black box and evaluate the relative

importance of the key elements in machine learning predictions. A typical machine learning

practice can be decomposed into four steps: (1) understanding domain knowledge, (2) preparing

and pre-processing data, (3) training the learning models, and (4) applying results to guide decisions.

During the college application season in August 2020, I conducted a survey experiment with 2,542

Chinese high school graduates to examine the impacts of differential access to various machine

learning elements on college choice quality.

To measure college choice quality, I designed a college application competition similar to
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the Kaggle data science challenges that asked participants to submit college applications for the

same hypothetical applicant.40 Compared with using a field experimental design, this approach

had two advantages. First, it did not affect each participant’s real life outcomes. For the concern

of truth-telling, I used a set of award incentives to encourage participants to submit deliberate

applications. Second, the competition only asked participants to consider college quality measured

as the national ranking used in the previous section. This setup helped identify the impacts of

college choice behaviors by ruling out the impacts of college and major preferences.

With the assistance of China Center for Education and Human Resources, I recruited online

survey participants through various channels. The final sample included 2,542 high school gradu-

ates from all over the country (Figure A.8). However, due to the take-up differences, the sample

was not nationally representative. For example, more than 48% of the survey participants had

a parent with college education (vs. a 22% average in a national college student survey). Since

disadvantaged students are more likely to benefit from machine learning-assisted advising, effects

estimated in this survey experiment would serve as lower bound estimates. Following completion

of consent form and a short background survey, participants read the introduction and rules for the

“College Application Competition Against AI.” The competition proceeded as follows.

1. Information. Participants were presented with a list of the name and national ranking of 195

colleges that had allocated their admissions quotas to non-STEM rank students in Chongqing

in 2020 (the randomly selected context for the competition). They were also presented with

an hypothetical applicant with a college entrance exam score of 566.

2. Submission. Participants submitted their college applications for the hypothetical applicant

before the 2020 college admissions outcomes were released in mid-August. Each participant

was required to apply to six colleges in a ranked order.

3. “AI reference.” I pre-registered an application portfolio of six colleges that was generated by a

machine learning optimal decision algorithm.

4. Simulating results. After the 2020 college admissions outcomes in Chongqing were officially

unveiled, based on the Deferred Acceptance mechanism, I used college admissions cutoffs to

simulate the admissions results for the participants. Among the colleges that the hypothetical

having admissions scores equal to or lower than the hypothetical applicant’s score, each

40The design idea of using hypothetical applicant was motivated by the Standardized Patient program in medical
education that evaluates medical students in a simulated clinical environment.
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participant was assigned to be “admitted” to the college at the highest ranked order in her

application portfolio.

5. Determining winners. The top three participants “admitted” to the highest ranked colleges

among all participants were the winners. Participants who had ranked top 25% based

on admissions results received cash rewards. Additionally, all the participants who had

admissions results better than the “AI reference” would receive another special award.

In the “College Application Competition Against AI,” I first tested the importance of the

two main inputs to machine learning: human expertise (or domain knowledge) and data. The

intuition was that neither students nor machine learning could make correct predictions without a

good understanding of how the college admissions mechanism works or access to appropriately

pre-processed data. I designed four treatment groups: (1) Human expertise that provided the

“business as usual” guidance on college application strategies, (2) Data that provide admissions

scores data of the 195 colleges in 2019, (3) Human expertise + Data , and (4) Human expertise +

Data + Classification that provided additional information about the reach/match/safety types

of the 195 colleges based on machine learning predictions. Figure A.9 displays the online survey

experiment screen shots with specific information for each group.

I randomized each participant independently into one of the five groups (one control group

and four treatment groups) with a probability of 20% (Figure A.1). The automatic randomization

algorithm of the survey website resulted in that covariates were well balanced across groups

(Table B.9). The following linear regression was used to estimate the treatment effects (β1 to β4),

controlling for the covariates Xi listed in Table B.9:

Yi = β0 + β1 ∗ T1i + β2 ∗ T2i + β3 ∗ T3i + β4 ∗ T4i + Xi ∗ γ + ε i (5)

Table 6 reports the regression results. I constructed the outcome measures using the survey

participants’ submitted college applications and their simulated outcomes. Panel A focuses on

college choice behaviors. On average, students in the control group applied to colleges with

an average admission probability of 25.4% and treated students applied to colleges with higher

admissions probabilities. Similar to the null effects of “business as usual” advising in the previous

field experiment, access to human expertise (T1) did not statistically and substantially significantly

improve college choices. Access to historical admissions data even without perfectly understanding

the college admissions mechanisms (T2) largely helped students apply to colleges with higher

admissions chances. Providing students with both the human expertise and data (T3) had the
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largest effects while providing additional classification information (T4) slightly made students

more likely to apply to reach colleges. Columns 2-5 examined each survey participant’s college

application portfolio. On average, students applied to 4.4 “out of reach” colleges that had very low

predicted admissions probability (based on the machine learning model I built) for the hypothetical

applicant. Treated students reduced the number of “too high” colleges and increased the number

of colleges that more closely matched the hypothetical applicant’s college entrance exam score.

Panel B examines whether the improved college choice behaviors translated to increased

college access and match. Following the previous field experiment, the primary college admissions

outcomes included whether the hypothetical applicant was admitted to any college (column 6)

and the quality indicated by admissions scores of the admitted college (column 9). Results are

consistent with those in Panel A. Understanding the admissions rules and applications tips did not

change admissions outcomes but access to data mattered. Access to both human expertise and data

increased college admissions by more than 21 percentage points (vs. control mean of 45.1%) and

admitted college quality by a 0.32 standard deviation (or 66 places in the national college ranking).

Providing additional classification information did not statistically significantly change admissions

outcomes. These large treatment effects speak to the machine learning-assisted advising effects I

found in the previous field experiment.41 If college admissions were not constrained to at most

one offer per student, students in the control group would receive 1.4 offers while treated students

(except in T1) would have about one more offer. As a result of these improvements, column 10

shows that treated students had much higher rankings in the AI competition. These results confirm

that the advising effects reported in the 2017 RCT should not be driven by the low take-up rate.

In Figure 4, I further examine the heterogeneous treatment effects by each participant’s

predicted probabilities based on their background characteristics. The admissions probabilities

were estimated from a random forest model built on student covariates in the survey and the

control group sample (training data). Consistent with the findings in the previous experiment,

participants who had lower predicted admissions chances (e.g., without college-educated parents,

did not understand the Deferred Acceptance mechanism) would benefit more from the machine

learning elements. One important finding is that, for those students, providing guidance about

applications strategies also meaningfully improved their college access and match outcomes.

I also designed to test the effects of optimal decision algorithms by comparing the participants’

41The control mean of college admissions is lower than it was expected to be (e.g., about 80% of students were
admitted to college each year in Ningxia). This is because the low-stakes award competition motivated students to take
more risks for“out of reach” colleges.
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“human performance” with the pre-registered “AI reference” application portfolio. The intuition

was that machine learning might outperform human beings in the complex optimization process

even under the same information set of domain knowledge and data. In the case of college choice,

even if a student has perfect information to make accurate predictions of admissions chances

for each single college, it becomes a combinatorial problem when considering to choose six out

of 195 colleges and rank them in order. I built an algorithm to simplify the optimal college

choice decisions by automatically searching for the best candidates based on pre-specified features

(ranking, admissions probabilities) to maximize the expected outcome.

Results suggest that this algorithm had the best admission outcome. When considering the

admitted college quality, the pre-registered “AI reference” was admitted to the college with the

highest ranking among all the colleges that the hypothetical applicant was qualified for. Six of the

2,542 participants had the same outcome (1 in Control, 1 in T1, 2 in T3, 2 in T4). However, when

considering multiple admissions offers, “AI reference” beat all the participants: “AI reference” had

four admissions offers from the four highest ranked colleges among all the possible admissions.

These results imply that, while machine learning algorithms may not outperform simpler models

for simple prediction problems (Bird et al., 2020), they have the potentials to help students search

for and make optimal decisions in the complex college choice decisions.

7 Conclusion

In this paper, I have asked how to effectively and efficiently improve college access and match

at scale. Building on the new evidence that precise predictions of college admissions probabilities

are the key to an optimal college choice decisions, I designed a personalized advising program

to guide students to use data-based prediction strategies. Personalized advising substantially

improved college admissions outcomes through affecting a student’s college application behaviors

without changing their preferences for colleges and majors. I proposed and tested a novel policy

solution to scale up the labor-intensive personalized advising by increasing advising efficiency

using big data-based machine learning algorithms. Machine learning-assisted advising achieved

similar treatment effects to the conventional expert advising but largely reduced the time that an

expert advisor used to serve a student. Disadvantaged students who need the support most were

predicted to benefit more than their advantaged peers from the personalized advising.

While most machine learning applications use the models and algorithms as a black box,
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I conducted a supplemental survey experiment in 2020 to understand how machine learning

improves college choice decisions. With a nationwide sample of high school graduates, the results

confirm that machine learning predictions help improve college choice behaviors and admissions

outcomes. Increased access to human expertise and data, the two main inputs of predictions,

explain the effects of machine learning-assisted advising. Similar to the light-touch “business as

usual” advising, access to college choice knowledge alone does not affect college choice behaviors

and admissions; however, it helps disadvantaged students who lack information and guidance.

In applications with clear decision rules, correctly pre-processed data, and well-identified goals,

machine learning algorithms also help make optimal decisions. More generally, this paper suggests

that the combination of human expertise and machine learning methods in behaviorally motivated

interventions has a high potential to improve personalized decisions and outcomes in education

and aspects of life, particularly for those students who need the support most.

Data- and technology-based methods are increasingly useful for policy prediction problems.

These new methods, implemented jointly with expertise and data, have wide application prospects

in increasing intervention effectiveness in the pathways to and through college. Future work is

needed to test how to combine “human instruction” and “machine learning” to make the best

possible decisions at scale. While the interventions reported in this paper are not designed to recruit

students to a particular college, college administrators could improve their recruitment efforts and

performance by applying similar behavioral interventions (Castleman, Owen and Page, 2015; Page

and Gehlbach, 2017; Miller and Skimmyhorn, 2018; Dynarski et al., 2021).

In both centralized and decentralized college admissions systems, providing a centralized

data system would greatly reduce search costs for students (Arteaga et al., 2021). However, access

to information may not be sufficient for students to make informed choices; instead, the use of

information matters. Even with such a centralized data system, as noted by Hayek (1945), the

ultimate decisions must be left to the people who are familiar with the changes in the particular

circumstances. In the case of college choice, the personalized decisions should not be determined

merely by a central platform, data, or algorithms, but by each student with their own beliefs and

preferences. This paper demonstrates the effectiveness of improving college access and match

by helping students more accurately predict their college admissions probabilities and apply to

colleges based on such predictions without affecting their individual preferences.
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Figures

(a) Manual score equating (b) College short list in 2017

Figure 1: How does Stata reduce human labor?

Notes: Panel A shows a score-equating table that one student completed (this is from a student in another province in
2017, which is similar to the individualized advising process in Ningxia in 2016). For a short list of two tiers (Tier 1 -
Early admissions, Tier 1) and five colleges in each tier, she collected the admissions scores (maximum, mean, minimum)
of each college for the past three years. On the top of the table, she listed her equated CEE scores in these three years.
On the bottom, she noted that the previous table she returned to me had a mistake in the equated scores (then the
comparisons were wrong). This table may have taken an hour or so (much longer if including the search time for the
short listed colleges). It took much longer in the initial round of narrowing down the college options to a short list.
Panel B shows an automatic output of score-equating and college short list using Stata. It took several seconds after we
typed in a student’s ID. The Stata shortlist provided additional information like tier, special program, and admission
quota. The length of the list was flexible upon a student’s request.
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(a) A low predicted probablity (b) A high predicted probability

Figure 2: How does machine learning work in 2017?

Notes: This figure shows the machine learning interface (designed by Keqiang Li & Tzuyi Yu at the University of
Michigan) that we used in the 2017 fieldwork. We predicted the admissions probability for each college-major-rank list
for each student. The right column shows the relevant information (match tier, college-level average admissions score,
major-level average admissions score/quota in the prior year), most importantly, the predicted admission probability.
We used different colors (red, blue, green) to indicate reach, peer and safety types. This information was used to assist
the personalized advising. Advisers had access to the predicted probabilities of all the short-listed colleges and majors
for each student. We shared the output pictures with students. In future work, this interface could be potentially hosted
in a website for scale-up applications.
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(b) Outcome = Admitted college quality

Figure 3: Heterogeneous effects of machine learning-assisted advising by Causal Forests

Notes: This figure plots the heterogeneous effects of machine learning-assisted advising. Each scatter shows the average
treatment effects of the 500 students within that scatter. In panel (a), the CATE for the full sample is 0.021 (s.e.=0.005) and
the CATT is 0.027 (s.e.=0.005); the CATE for students with estimates of individual treatment effects above the sample
median is 0.046 and that for students below the sample median is -0.004. In panel (b), the CATE for the full sample is
0.035 (s.e.=0.011) and the CATT is 0.043 (s.e.=0.010); the CATE for students with estimates of individual treatment effects
above the sample median is 0.075 and that for students below the sample median is -0.006. The vertical lines are 95%
confidence intervals.
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Figure 4: Heterogeneous effects of machine learning elements by predicted admissions probabilities

Notes: This figure plots the heterogeneous effects of machine learning elements by predicted admissions probabilities in
the 2020 survey experiment. The admissions probabilities are estimated from a random forest model built on student
covariates in the survey and the control group sample (training data). The vertical lines are 95% confidence intervals.
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Tables

Table 1: College choices and the poverty gap in college match

Mean Outcome: Index of college match

Rural Urban Without school FE With school FE

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Rural-urban gap (β1) -0.107*** -0.064*** -0.049*** -0.040*** -0.063*** -0.035*** -0.025*** -0.023***
(0.011) (0.009) (0.008) (0.007) (0.007) (0.006) (0.006) (0.006)

(Strategies)
Targeting -0.159 0.155 0.204*** 0.180*** 0.207*** 0.209*** 0.182*** 0.210***

(0.008) (0.009) (0.010) (0.008) (0.009) (0.010)
General nudge -0.174 0.178 0.075*** 0.070*** 0.082*** 0.073***

(0.004) (0.004) (0.005) (0.004)
(Preferences)
Special programs -0.011 -0.055 0.030*** 0.029***

(0.004) (0.004)
Tuition & quota 0.048 -0.008 -0.064*** -0.064***

(0.008) (0.008)
Location -0.300 0.287 0.010 0.020**

(0.007) (0.008)
Major -0.050 0.072 -0.016*** -0.014***

(0.003) (0.003)

Observations 35,332 35,332 35,332 35,332 35,332 35,332 35,332 35,332
R-squared 0.713 0.747 0.751 0.756 0.719 0.751 0.754 0.758

Notes: This table reports the OLS regression (Model (1)) results for the partial correlations between college application behaviors and the college
match index (standardized), using data from those who submitted college applications in the control group in 2017. Application behaviors are
constructed using the full applications data, as described in Appendix Subsection C.1. Columns (1) and (2) present the mean values of each college
behavior index for rural and urban students. Column (3) shows the rural-urban gap in college admissions using the full untreated sample (same
as in column (3) of Panel C in Table B.1). The next three columns add the strategy and preference measures (principal component factor indices)
stepwise. Columns (7)-(10) control for high school fixed effects. All regressions include a student’s CEE score and other demographic covariates.
Standard errors in parentheses are clustered at the high school level. * significant at 10%, ** significant at 5%, *** significant at 1%.
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Table 2: First stage: Take-up of individualized advising programs

Treated in T1 Treated in T2

(1) (2) (3) (4) (5) (6) (7) (8)

T1 (machine learning) 0.036*** 0.036*** 0.036*** 0.036*** -0.001***
(0.003) (0.003) (0.003) (0.003) (0.000)

T2 (business as usual) -0.000** 0.024*** 0.024*** 0.024*** 0.024***
(0.000) (0.002) (0.002) (0.002) (0.002)

T1*Teacher incentives 0.001*
(0.001)

T2*Teacher incentives -0.001
(0.001)

Teacher incentives 0.003 0.001
(0.009) (0.008)

Rural 0.000 0.000 0.000 -0.000 -0.000 -0.001
(0.002) (0.002) (0.002) (0.001) (0.001) (0.001)

Female -0.000 -0.000 -0.000 -0.001 -0.001 -0.001*
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Minority -0.000 -0.000 0.000 -0.001 -0.001 -0.001
(0.003) (0.003) (0.003) (0.003) (0.003) (0.001)

Age 0.002* 0.002* 0.002* -0.002 -0.002 -0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

STEM -0.000 -0.000 -0.000 -0.002 -0.002 -0.002*
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Repeater -0.002** -0.002** -0.001** 0.000 0.000 0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

CEE score 0.002*** 0.002*** 0.002*** 0.001*** 0.001*** 0.001***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

F stat (excluded instruments) 141.4 142.0 75.8 72.8 134.5 134.2 68.3 68.2
Sanderson-Windmeijer F stat 190.8 154.4

Observations 48,685 48,685 48,685 54,055 48,408 48,408 48,408 54,055

Notes: This table reports the OLS regression (Model (3)) results of the take-up of the individualized advising interventions in
2017. Over 1,800 users (students or parents; about 16% of the treatment group size) added us as friends in the online message
App (WeChat), but many of them refused to provide their exam ID and school ID for verification. Students in both groups
received the same text message (the only exception is the contact information). Take-up rates among high-achieving students
were 4.8% and 4.1% for the two treatment groups. All regressions control for strata fixed effects. Standard errors in parentheses
are clustered at the high school level. * significant at 10%, ** significant at 5%, *** significant at 1%.
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Table 3: ITT and TOT effects on college access and match of the individualized advising programs

Admission Application Enrollment in 2017 Repeating in 2018
(=1) (=1) (=1) (=1)

ITT TOT ITT TOT ITT TOT ITT TOT
(1) (2) (3) (4)

Control mean 0.837 0.900 0.765 0.209
Control sd [0.369] [0.301] [0.424] [0.407]

T1 (machine learning) 0.009* 0.242* 0.005 0.128 0.010* 0.269* -0.009* -0.233*
(0.005) (0.130) (0.004) (0.105) (0.005) (0.149) (0.005) (0.138)

T2 (business as usual) -0.006 -0.254 -0.004 -0.143 -0.010** -0.390** 0.008 0.338
(0.004) (0.173) (0.004) (0.147) (0.005) (0.191) (0.005) (0.220)

Pr(β[T1] = β[T2]=0) 0.066 0.057 0.305 0.284 0.037 0.032 0.074 0.066
Pr(β[T1] = β[T2]) 0.021 0.021 0.127 0.127 0.011 0.009 0.024 0.025

Index College Index Undermatch
quality drop non-admitted

(s.d.) (s.d.) (s.d.) (=1)

ITT TOT ITT TOT ITT TOT ITT TOT
(5) (6) (7) (8)

Control mean -0.069 -0.170 -0.085 0.280
Control sd [0.975] [1.202] [0.980] [0.449]

T1 (machine learning) 0.022** 0.598** 0.028** 0.770** 0.010 0.262 -0.011* -0.288*
(0.009) (0.255) (0.013) (0.360) (0.007) (0.173) (0.006) (0.166)

T2 (business as usual) -0.007 -0.265 -0.009 -0.337 0.002 0.081 0.007 0.285
(0.008) (0.330) (0.012) (0.483) (0.005) (0.189) (0.006) (0.226)

Pr(β[T1] = β[T2]=0) 0.042 0.035 0.077 0.066 0.311 0.303 0.056 0.048
Pr(β[T1] = β[T2]) 0.018 0.027 0.035 0.053 0.336 0.466 0.017 0.019

Notes: This table reports the OLS regression results of the ITT effects (Model (2)) and TOT effects (Model (4)) of the individ-
ualized advising interventions in 2017 on a family of college access and match outcomes. The sample includes the universe
of public high school graduates in Ningxia in 2017 (N=54,055). Column (7) only includes students who were admitted to col-
lege (N=45,482). Machine learning intervention used the predicted probabilities of admissions to each college-major-order
for each student and other automatic data analyses to assist the conventional online personalized advising. Business as
usual intervention provided low-touch, brief college application guidelines and tips to students, which is used as a placebo
test that mimics a low-price for-profit consulting service available to students if they are willing to pay for it. Index de-
notes a principal-component index of college quality using information from five measures (median, mean, and minimum
admissions scores; national college ranking scores and percentiles). College quality is the national college ranking score
(standardized) using college admissions data from 1996-2017 and administrative data on institutional resources for every
college in China. The other outcomes are dichotomous variables. All regressions control for student-level covariates and
strata fixed effects. Standard errors in parentheses are clustered at the high school level. * significant at 10%, ** significant at
5%, *** significant at 1%.
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Table 4: ITT and TOT effects of individualized advising programs: College application behaviors

Panel A: Predicted outcomes Ex-ante applied Ex-ante mean Ex-ante expected Ex-post applied
college quality admissions prob. college quality college quality

ITT TOT ITT TOT ITT TOT ITT TOT
(1) (2) (4) (4)

Control mean -0.432 0.646 -0.417 -0.219
Control sd [1.329] [0.138] [1.031] [1.133]

T1 (machine learning) 0.025** 0.683** -0.003* -0.078* 0.023** 0.638** 0.020** 0.549**
(0.011) (0.309) (0.002) (0.044) (0.011) (0.291) (0.009) (0.259)

T2 (business as usual) -0.008 -0.328 0.001 0.048 -0.008 -0.314 -0.009 -0.353
(0.013) (0.522) (0.002) (0.075) (0.012) (0.464) (0.008) (0.339)

Pr(T1=T2=0) 0.064 0.055 0.181 0.174 0.068 0.057 0.046 0.040
Pr(T1=T2) 0.047 0.074 0.112 0.144 0.042 0.064 0.016 0.021

Panel B: Strategies Apply to colleges College application Strategy Strategy
in ML list Index Targeting General nudge

ITT TOT ITT TOT ITT TOT ITT TOT
(5) (6) (7) (8)

Control mean 0.305 -0.030 -0.028 -0.029
Control sd [0.460] [1.001] [0.994] [1.003]

T1 (machine learning) 0.011** 0.306** 0.022* 0.599* 0.033*** 0.894*** 0.030** 0.804**
(0.006) (0.150) (0.012) (0.332) (0.011) (0.305) (0.012) (0.338)

T2 (business as usual) -0.003 -0.114 -0.018 -0.728* -0.026** -1.063** -0.012 -0.489
(0.006) (0.225) (0.011) (0.439) (0.013) (0.491) (0.012) (0.482)

Pr(T1=T2=0) 0.136 0.119 0.126 0.101 0.007 0.005 0.058 0.049
Pr(T1=T2) 0.099 0.139 0.043 0.035 0.002 0.002 0.035 0.042

Panel C: Preferences Special programs Tuition & quota Location Major

ITT TOT ITT TOT ITT TOT ITT TOT
(9) (10) (11) (12)

Control mean -0.030 0.030 -0.058 0.003
Control sd [0.978] [1.012] [0.977] [0.999]

T1 (machine learning) -0.005 -0.137 0.018 0.484 -0.005 -0.137 -0.002 -0.058
(0.017) (0.456) (0.014) (0.375) (0.011) (0.294) (0.016) (0.425)

T2 (business as usual) -0.000 -0.010 -0.001 -0.014 -0.003 -0.113 -0.009 -0.354
(0.012) (0.499) (0.011) (0.448) (0.010) (0.395) (0.017) (0.672)

Pr(T1=T2=0) 0.956 0.955 0.464 0.434 0.878 0.874 0.864 0.861
Pr(T1=T2) 0.801 0.831 0.322 0.390 0.879 0.958 0.774 0.714

Notes: This table reports the OLS regression results of the ITT effects (Model (2)) and TOT effects (Model (4)) of the individualized
advising interventions in 2017 on a family of college application behaviors. The sample includes the universe of public high school
graduates in Ningxia in 2017 (N=54,055). Machine learning intervention used the predicted probabilities of admissions to each college-
major-order for each student and other automatic data analyses to assist the conventional online personalized advising. Business as
usual intervention provided low-touch, brief college application guidelines and tips to students, which is used as a placebo test that
mimics a low-price for-profit consulting service available to students if they are willing to pay for it. See the text for more descriptions
of the outcome variables. All regressions control for student-level covariates and strata fixed effects. Standard errors in parentheses
are clustered at the high school level. * significant at 10%, ** significant at 5%, *** significant at 1%.
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Table 5: Averages in covariates by the quartile of individual treatment effects from Causal Forests

ML-assisted advising effects on admission ML-assisted advising effects on college match index

Bottom quarter Q2 Q3 Top quarter Bottom quarter Q2 Q3 Top quarter

Rural 0.547 0.513 0.538 0.530 0.368 0.453 0.599 0.708
[0.498] [0.500] [0.499] [0.499] [0.482] [0.498] [0.490] [0.455]

Female 0.575 0.551 0.536 0.520 0.530 0.543 0.547 0.561
[0.494] [0.497] [0.499] [0.500] [0.499] [0.498] [0.498] [0.496]

STEM 0.585 0.653 0.723 0.713 0.677 0.642 0.692 0.664
[0.493] [0.476] [0.448] [0.452] [0.468] [0.480] [0.462] [0.472]

Minority 0.312 0.321 0.338 0.344 0.313 0.283 0.273 0.447
[0.463] [0.467] [0.473] [0.475] [0.464] [0.450] [0.445] [0.497]

Repeater 0.195 0.158 0.222 0.185 0.081 0.185 0.228 0.266
[0.396] [0.365] [0.416] [0.388] [0.272] [0.389] [0.420] [0.442]

Age (<=19) 0.855 0.845 0.865 0.856 0.798 0.872 0.870 0.882
[0.352] [0.362] [0.342] [0.351] [0.401] [0.334] [0.337] [0.323]

CEE score (s.d.) 0.057 0.165 0.186 0.238 0.551 0.138 -0.008 -0.035
[0.947] [0.976] [0.943] [0.979] [0.995] [0.950] [0.869] [0.921]

Notes: This table shows the mean and standard deviation of each covariate by the quartile of individual treatment effects estimated from
the Causal Forests model. The left panel is based on the effects of machine learning-assisted advising on college admissions and the
right panel is based on the effects on college match index.
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Table 6: Effects of machine learning elements on improving college choices and admissions

Panel A: College choice behaviors (1) (2) (3) (4) (5)
Mean prob. Number of Number of Number of Number of
of applied “out of reach” reach match safety
colleges colleges colleges colleges colleges

Control mean 0.254 4.386 0.095 0.188 0.244
[0.320] [2.006] [0.332] [0.516] [0.702]

T1 (Human expertise) 0.033 -0.210 0.018 0.041 -0.019
(0.024) (0.147) (0.026) (0.041) (0.049)

T2 (Data) 0.110*** -0.694*** 0.008 0.084* 0.170***
(0.024) (0.149) (0.027) (0.045) (0.061)

T3 (Human expertise+Data) 0.185*** -1.191*** 0.041 0.218*** 0.223***
(0.023) (0.148) (0.027) (0.053) (0.057)

T4 (Human expertise+Data+Classification) 0.143*** -1.010*** 0.137*** 0.217*** 0.109**
(0.023) (0.148) (0.033) (0.052) (0.053)

Pr(β[T1] = β[T4]) 0.000 0.000 0.000 0.001 0.013
Pr(β[T2] = β[T4]) 0.177 0.039 0.000 0.018 0.327
Pr(β[T3] = β[T4]) 0.084 0.234 0.006 0.977 0.058

Panel B: College admissions results (6) (7) (8) (9) (10)
Admitted Possible Ranking of 2020 admission Individual

admissions admitted score of admitted ranking in the
offers college college (sd) AI competition

Control mean 0.451 1.448 424.295 0.661 2,001.301
[0.498] [1.926] [165.492] [0.738] [1,103.758]

T1 (Human expertise) 0.044 0.151 -11.140 0.060 -69.835
(0.036) (0.142) (11.871) (0.053) (78.688)

T2 (Data) 0.106*** 0.602*** -36.952*** 0.158*** -228.987***
(0.035) (0.144) (11.912) (0.052) (77.385)

T3 (Human expertise+Data) 0.211*** 1.027*** -65.964*** 0.320*** -443.644***
(0.034) (0.142) (11.704) (0.050) (75.409)

T4 (Human expertise+Data+Classification) 0.174*** 0.759*** -59.007*** 0.269*** -374.858***
(0.034) (0.141) (12.057) (0.051) (77.509)

Pr(β[T1] = β[T4]) 0.000 0.000 0.000 0.000 0.000
Pr(β[T2] = β[T4]) 0.042 0.285 0.066 0.028 0.055
Pr(β[T3] = β[T4]) 0.264 0.066 0.555 0.300 0.354

Notes: This table reports the effects of accessing different information (classified as machine learning elements) on college choice behaviors
and simulated admissions outcomes in a survey experiment. The sample included 2,542 Chinese high school graduates in 2020. Mean
probability of applied colleges in column 1 averages the admissions probabilities (generated by the causal forest model used for this
subsection) of all the six colleges that each participant applied to. The types of colleges in columns 2-4 are based on predicted admissions
probabilities. Admitted in column 6 simulates admissions results using the same rules in the contextual province that assigned at most
one offer to each student. Possible admissions offers in column 7 simulates admissions results by assuming multiple offers are possible.
College ranking in column 8 uses the same ranking information as in Table 3. Individual ranking in the AI competition ranks each
participant based on the simulated admissions results from 1 to 2542. All regressions control for gender, parental education, STEM
track, risk measure, and an indicator of understanding the college admissions mechanism. Robust standard errors are in parentheses. *
significant at 10%, ** significant at 5%, *** significant at 1%.
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A Appendix figures

Figure A.1: Experimental design

Notes: This figure shows the experimental design of the Bright Future of China Project in Ningxia in 2017 and the
supplemental survey experiment in 2020. In the 2017 field experiment, randomization strata of student interventions
were by school, track, gender, race, rural hukou, county of residence, and achievement (classifying high-achieving
students using low-stakes graduation test scores). In the 2020 experiment, randomization was independently at the
student level.
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Figure A.2: Location of Ningxia

Notes: Ningxia, officially the Ningxia Hui Autonomous Region, has the third smallest GDP in China with Muslims
forming more than 38% of its population. Most of the region is desert, making Ningxia one of the poorest provinces
in northwestern China. In 2017, the annual per capita disposable (after tax) income of urban residents is about $4,200
(national average: $5,600), and that of rural residents is $1,650 (national average: $2,060). About 800,000 of its 6 million
population are under the poverty line that earn less than $1 a day.
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Figure A.3: Relative importance of features in the random forest predictions

Notes: This figure plots feature importance of the random forest model from the original output graph. We used
student-college-major-rank order level data in 2015 to train the model (80% training set and 20% test set). The prediction
accuracy was 94.3%. The most important two features are within province-track CEE score ranking (paiming) and within
province-track CEE score (normalized_zongfen). Students with the same total CEE score may have different ranking
because the differences in their subject scores (ranking weight order: track composite, Chinese, math, English for
non-STEM students; track composite, math, Chinese, English for STEM students). The third important feature is the
college rank order list (zyno).
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Figure A.4: Example of the online individualized advising in 2017

Notes: The conversations show two facts: This student would simply choose college by names (a behavioral mistake),
and he was in need of a short list to assist his college applications.
Translation of the conversations:
Student: Teacher, you could provide me a short list of colleges that my parents and I will not be entangled with the
choices of colleges.
Student: Honestly, I would just choose colleges by their names. Your choices must be better than mine.
Student: (Smile)
Advisor: Yes, we can discuss about your applications together, later tonight or tomorrow (will have a meeting right
now).
Advisor: Don’t worry, June 27 is the deadline (the day after tomorrow).
Student: Teacher, your assistance is god’s grace for students like me. I trust you.
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Figure A.5: Distribution of college application submission time

Notes: This figure shows the kernel distribution of college application submission time, separately for rural and urban
students in the control group who were eligible for applying to selective colleges. The gray bar shows the distribution of
submission time of students who were assigned to receive the “machine learning” advising and eventually received the
advising. College application was open from 2017-06-23 16pm to 2017-06-27 18pm.
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(a) Full

(b) Partial (leftmost part)

Figure A.6: A single tree for estimating the effects of machine learning-assisted advising on college
match

Notes: This figure plots a single tree for estimating the effects of machine learning-assisted advising on college match
using causal forests. Panel (a) shows the full tree and panel (b) shows the leftmost part. Each white box indicates a split
and the corresponding covariate and each purple box indicates a leaf node. size reports the sample size within each
node. avgY and avgW are the mean values for the outcome (college match index) and the treatment status within each
node. The causal forests are estimate using 50% of the experimental sample (training data). Age is a dummy indicator
for students younger than nineteen years old by the time of the college entrance exam.
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(a) Outcome = Admitted to any college
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(b) Outcome = Admitted college quality

Figure A.7: Heterogeneous effects of “business as usual” advising by Causal Forests

Notes: This figure plots the heterogeneous effects of “business as usual” advising. Each scatter shows the average
treatment effects of the 500 students within that scatter. In panel (a), the CATE for the full sample is 0.001 (s.e.=0.009)
and the CATT is 0.0001 (s.e.=0.009). In panel (b), the CATE for the full sample is 0.0002 (s.e.=0.005) and the CATT is
0.0002 (s.e.=0.005). The vertical lines are 95% confidence intervals.
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Figure A.8: Geographic distribution of the survey respondents in 2020

Notes: This figure plots geographic distribution of the survey respondents (high school graduates) in 2020.

56



(a) Cover page with the competition rules (b) Control group

(c) Treatment 1: Human expertise (d) Treatment 2: Data

(e) Treatment 3: Human expertise + Data (f) Treatment 4: Human expertise + Data + Classifica-
tion

Figure A.9: Survey experimental design in 2020

Notes: This figure shows the survey experiment in 2020. The left part of each subfigure shows the the screen shots from
the survey website. The left part of each subfigure highlight the key information. The title line of each subfigure is
“Competing with AI to win an iPad: Looking for college application experts.”
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B Appendix tables

Table B.1: The poverty gap in college match

Outcome: Index of college match

(1) (2) (3) (4)

Rural -0.134*** -0.149*** -0.107*** -0.063***
(0.015) (0.014) (0.011) (0.007)

Female -0.049*** -0.050*** -0.044***
(0.010) (0.009) (0.008)

Minority -0.008 -0.081*** -0.061***
(0.016) (0.011) (0.010)

Age 0.003 -0.005 -0.003
(0.009) (0.009) (0.009)

STEM 0.186*** 0.199*** 0.194***
(0.013) (0.011) (0.010)

Repeater 0.178*** 0.068*** 0.095***
(0.017) (0.013) (0.014)

CEE score 0.811*** 0.809*** 0.786*** 0.764***
(0.017) (0.019) (0.013) (0.015)

School FE No No No Yes
Observations 39,385 39,385 35,332 35,332
R-squared 0.630 0.646 0.713 0.719

Notes: This table reports the OLS regression (Model (1)) results of
the rural-urban gap in college match outcomes (as being summa-
rized in the single index), using the control group sample in 2017.
Columns (3) and (4) exclude students who were not admitted to a
college. Columns (4) controls for high school fixed effects. Standard
errors in parentheses are clustered at the high school level. * signifi-
cant at 10%, ** significant at 5%, *** significant at 1%.
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Table B.2: Balance checks

All students
Excluding students in

treated teachers’ classes

Diff from Control Diff from Control

Control T1 T2 Control T1 T2
(1) (2) (3) (4) (5) (6)

Rural 0.572 0.000 0.000 0.570 0.000 0.000
[0.495] (0.000) - [0.495] (0.000) (0.000)

Female 0.549 0.000 0.000 0.549 0.000 0.000
[0.498] (0.000) (0.000) [0.498] (0.000) (0.000)

Minority 0.321 0.002 -0.001 0.317 0.002 -0.002
[0.467] (0.002) (0.001) [0.465] (0.002) (0.001)

Age 0.873 -0.010 -0.001 0.874 -0.010 -0.002
[0.333] (0.006) (0.004) [0.332] (0.007) (0.004)

STEM 0.665 0.001 -0.001 0.661 0.002 -0.003
[0.472] (0.004) (0.004) [0.473] (0.004) (0.004)

Repeater 0.231 0.008 0.002 0.236 0.007 0.003
[0.422] (0.005) (0.005) [0.425] (0.005) (0.005)

CEE score 0.034 0.000 -0.001 0.040 0.007 0.009
[0.943] (0.011) (0.011) [0.944] (0.011) (0.011)

F test 1.124 0.091 0.770 0.443
(P value) 0.360 0.999 0.615 0.871

Students 43,038 5,647 5,370 39,385 5,246 4,935
Schools 61 61 61 61 61 61

Notes: This table reports the balance checks results using student-level data in 2017.
There were 836 treated students in treated teachers’ classes. Age is a dummy indica-
tor for students younger than nineteen years old by the time of the college entrance
exam. Repeater is a dummy indicator for students having taken the CEE at least
once in the previous years. CEE score is standardized by STEM/non-STEM tracks
using the full sample. Joint F test results are from regressions in Table B.3. Strata
fixed effects are included. Standard errors in parentheses are clustered at the high
school level. * significant at 10%, ** significant at 5%, *** significant at 1%.
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Table B.3: Balance checks: Prediction of treatment status

All students
Excluding students in

treated teachers’ classes

T1 T2 T1 T2
(1) (2) (1) (2)

Rural 0.010 -0.003 0.007 -0.011
(0.009) (0.009) (0.009) (0.008)

Female -0.003 -0.000 -0.003 0.001
(0.003) (0.002) (0.003) (0.003)

Minority 0.021 -0.006 0.016 -0.023
(0.018) (0.019) (0.019) (0.016)

Age -0.009 -0.002 -0.009 -0.002
(0.006) (0.004) (0.006) (0.004)

STEM 0.001 -0.002 0.003 -0.004
(0.006) (0.006) (0.006) (0.006)

Repeater 0.007* 0.002 0.005 0.001
(0.004) (0.004) (0.004) (0.004)

CEE score -0.001 -0.001 0.000 0.001
(0.002) (0.002) (0.002) (0.002)

F test 1.124 0.091 0.770 0.443
(P value) 0.360 0.999 0.615 0.871
Observations 48,685 48,408 44,631 44,320
R-squared 0.121 0.019 0.122 0.020

Notes: This table reports the balance checks results from separate
OLS regressions that predict the treatment status using student-
level data in 2017. Strata fixed effects are included. Joint F test
results are reported. Standard errors in parentheses are clustered
at the high school level. * significant at 10%, ** significant at 5%, ***
significant at 1%.
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Table B.4: ITT and TOT effects of individualized advising programs: Itemized outcomes in the
index measure

College median College mean College min Ranking
(s.d.) (s.d.) (s.d.) (pctl)

ITT TOT ITT TOT ITT TOT ITT TOT
(1) (2) (3) (4)

Control mean -0.227 -0.200 -0.998 45.121
Control sd [1.159] [1.109] [1.317] [33.882]

T1 (machine learning) 0.021** 0.565** 0.019** 0.511** 0.032** 0.874** 0.833** 22.703**
(0.010) (0.284) (0.009) (0.245) (0.013) (0.369) (0.378) (10.425)

T2 (business as usual) -0.008 -0.314 -0.008 -0.306 -0.003 -0.099 -0.314 -12.526
(0.009) (0.375) (0.008) (0.315) (0.012) (0.484) (0.340) (13.743)

Pr(β[T1] = β[T2]=0) 0.071 0.063 0.052 0.046 0.060 0.051 0.055 0.048
Pr(β[T1] = β[T2]) 0.027 0.038 0.018 0.025 0.047 0.082 0.022 0.031

Notes: This table reports the OLS regression results of the ITT effects (Model (2)) and TOT effects (Model (4)) of the indi-
vidualized advising interventions in 2017 on itemized college match outcomes (except for college quality in column 6 of
Table 3) that build the single index. The sample includes the universe of public high school graduates in Ningxia in 2017
(N=54,055). Machine learning intervention used the predicted probabilities of admissions to each college-major-order for
each student and other automatic data analyses to assist the conventional online personalized advising. Business as usual
intervention provided low-touch, brief college application guidelines and tips to students, which is used as a placebo test
that mimics a low-price for-profit consulting service available to students if they are willing to pay for it. All regressions
control for student-level covariates and strata fixed effects. Standard errors in parentheses are clustered at the high school
level. * significant at 10%, ** significant at 5%, *** significant at 1%.
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Table B.5: ITT and TOT effects of individualized advising programs: Itemized college application
behaviors

Control
Effects of T1 Effects of T2

ITT TOT ITT TOT
College application behaviors (1) (2) (3)

A. Strategy - Targeting

Apply to at least one college in match tier 0.757 0.008* 0.221* -0.008 -0.320
[0.429] (0.005) (0.129) (0.005) (0.216)

Estimated gap within 0.15 s.d. 0.282 0.013** 0.348** 0.002 0.074
[0.450] (0.005) (0.152) (0.006) (0.246)

Descending order list 0.194 0.013** 0.355** -0.003 -0.109
[0.395] (0.006) (0.163) (0.005) (0.205)

First listed college is “reach" 0.617 0.016*** 0.421** -0.014** -0.581**
[0.486] (0.006) (0.165) (0.007) (0.274)

Last listed college is “safety” 0.264 0.004 0.106 -0.003 -0.129
[0.441] (0.006) (0.162) (0.006) (0.258)

Combined “reach,” “match,” “safety” 0.216 0.011* 0.286* -0.014** -0.577**
[0.411] (0.006) (0.171) (0.007) (0.276)

Percent of “reach” colleges 28.459 0.527 14.693 0.093 4.046
[30.401] (0.409) (11.239) (0.371) (15.131)

Percent of “match” colleges 36.465 0.165 3.900 -0.587 -24.020*
[30.266] (0.418) (11.521) (0.357) (14.351)

Percent of “safety” colleges 35.076 -0.692 -18.593 0.494 19.974
[33.510] (0.476) (13.288) (0.456) (17.900)

B. Strategy - General nudge

Apply to all four colleges in match tier 0.669 0.011* 0.286* -0.005 -0.216
[0.470] (0.006) (0.155) (0.006) (0.244)

Percent of majors applied to 61.181 0.740** 19.911** -0.498 -20.134
[30.411] (0.362) (9.989) (0.363) (14.702)

Percent of flexible major assignment 61.475 1.001* 27.646* -0.056 -1.892
[41.815] (0.592) (16.318) (0.459) (18.517)

Notes: This table reports the OLS regression results of the ITT effects (Model (2)) and TOT effects (Model (4))
of the individualized advising interventions in 2017 on itemized college application behaviors. Results for the
rest strategies and preferences are statistically insignificant. The sample includes the universe of public high
school graduates in Ningxia in 2017 (N=54,055). Machine learning intervention used the predicted probabili-
ties of admissions to each college-major-order for each student and other automatic data analyses to assist the
conventional online personalized advising. Business as usual intervention provided low-touch, brief college
application guidelines and tips to students, which is used as a placebo test that mimics a low-price for-profit
consulting service available to students if they are willing to pay for it. See the text for more descriptions of the
outcome variables. All regressions control for student-level covariates and strata fixed effects. Standard errors
in parentheses are clustered at the high school level. * significant at 10%, ** significant at 5%, *** significant at
1%.
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Table B.6: Correlations between application time use and outcomes in college choices and admis-
sions

Admission (=1) Match index (s.d.)

OLS OLS IPW+RA IV OLS OLS IPW+RA IV
School FE School FE

(1) (2)

0.005*** 0.005*** 0.009** 0.016*** 0.008*** 0.017**
Hours (0.000) (0.000) (0.004) (0.001) (0.000) (0.007)

0.249*** 0.225*** 0.213*** 0.704** 0.890*** 0.363*** 0.351*** 1.351**
Later than 2 days (0.010) (0.009) (0.003) (0.360) (0.056) (0.014) (0.006) (0.648)

Application index (s.d.) Targeting stragey (s.d.)

OLS OLS IPW+RA IV OLS OLS IPW+RA IV
School FE School FE

(3) (4)

Hours 0.014*** 0.013*** 0.023** 0.005*** 0.003*** 0.034***
(0.001) (0.001) (0.010) (0.001) (0.000) (0.012)

Later than 2 days 0.781*** 0.629*** 0.503*** 1.852** 0.708*** 0.570*** 0.576*** 2.740***
(0.038) (0.028) (0.007) (0.860) (0.036) (0.023) (0.010) (1.034)

Notes: This table reports the correlation between application time use the outcomes in college choices and admissions,
using four different strategies: OLS without school fixed effects; OLS with school fixed effects; inverse-probability-weighted
regression adjustment; and IV (using the random assignment to the two advising interventions as instrumental variables).
Each cell is from a separate regression. All regressions control for student-level covariates. IPW+RA controls for high
school fixed effects. IV includes strata fixed effects. Standard errors in parentheses are clustered at the high school level. *
significant at 10%, ** significant at 5%, *** significant at 1%.
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Table B.7: Heterogeneity in the ITT effects on time spent for application (hours)

All Urban Rural Male Female
(1) (2) (3) (4)

N (students) 54,055 23,776 30,279 24,658 29,397

Control 57.26 60.516 54.819 57.282 57.238
[36.916] [37.196] [36.516] [37.280] [36.615]

T1 (machine learning) 0.973** 0.695 1.249* 1.588** 0.396
(0.431) (0.554) (0.648) (0.706) (0.654)

T2 (business as usual) -0.777* -0.649 -0.892 -0.893 -0.676
(0.458) (0.743) (0.669) (0.642) (0.588)

Non-minority Minority Low-achieving High-achieving
(5) (6) (7) (8)

N (students) 36,773 17,282 40,805 13,250

Control 56.985 57.835 48.381 90.014
[37.243] [36.209] [34.280] [26.299]

T1 (machine learning) 0.916* 1.090 1.393** 0.440
(0.556) (0.690) (0.595) (0.514)

T2 (business as usual) -1.450*** 0.663 -0.732 -0.520
(0.523) (0.756) (0.576) (0.612)

Notes: This table reports the ITT effects of individualized advising interventions on application time use. The
outcome variable is the total hours from the open dates (June 23 for selective colleges and August 1 for non-
selective colleges). Students who did not submit their applications were coded as zero hours (results are similar
if excluding these students). Machine learning intervention used the predicted probabilities of admissions to
each college-major-order for each student and other automatic data analyses to assist the conventional online
personalized advising. Business as usual intervention provided low-touch, brief college application guidelines
and tips to students, which is used as a placebo test that mimics a low-price for-profit consulting service available
to students if they are willing to pay for it. All regressions control for student-level covariates and strata fixed
effects. Standard errors in parentheses are clustered at the high school level. * significant at 10%, ** significant at
5%, *** significant at 1%.
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Table B.8: Heterogeneous ITT effects of individualized advising programs

Urban Rural Male Female Non-minority Minority Low High
achieving achieving

(1) (2) (3) (4) (5) (6) (7) (8)

Take-up 0.039*** 0.033*** 0.033*** 0.039*** 0.037*** 0.035*** 0.027*** 0.048***
(0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.003) (0.004)

Admission 0.008 0.010 0.022*** -0.003 0.008 0.011 0.015* 0.004***
(0.006) (0.007) (0.006) (0.007) (0.006) (0.007) (0.008) (0.001)

College match index 0.012 0.031** 0.040*** 0.005 0.025** 0.014 0.032** 0.014*
(0.012) (0.012) (0.012) (0.013) (0.012) (0.013) (0.013) (0.007)

ML list 0.007 0.015* 0.022*** 0.001 0.014** 0.004 0.014** 0.004
(0.009) (0.009) (0.007) (0.008) (0.007) (0.010) (0.007) (0.007)

College choice index 0.029* 0.016 0.046** 0.001 0.032** 0.002 0.041* 0.002
(0.015) (0.018) (0.018) (0.019) (0.016) (0.018) (0.021) (0.010)

Targeting strategy 0.036** 0.031* 0.058*** 0.011 0.046*** 0.006 0.054** -0.001
(0.016) (0.019) (0.019) (0.018) (0.015) (0.021) (0..020) (0.014)

N (students) 23,776 30,279 24,658 29,397 36,773 17,282 40,805 13,250

Notes: This table reports heterogeneous ITT effects of the machine learning assisted advising on college choice and admission outcomes.
The left column lists the outcomes (except for the number of observations in the first row). The sample includes the universe of public
high school graduates in Ningxia in 2017 (N=54,055). Machine learning treatment applies the predicted probabilities of admissions to
each college-major-order for each student and other automatic data analyses to assist the conventional online personalized advising. All
regressions control for student-level covariates and strata fixed effects. Standard errors in parentheses are clustered at the high school level.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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Table B.9: Balance checks for the 2020 survey experiment

(1) (2) (3) (4) (5)
Control T1 T2 T3 T4 ANOVA

Female 0.335 0.334 0.327 0.345 0.336 0.999
[0.473] [0.472] [0.470] [0.476] [0.473]

STEM track 0.552 0.548 0.574 0.579 0.617 0.985
[0.498] [0.498] [0.495] [0.494] [0.487]

Parent: High school 0.374 0.366 0.400 0.404 0.385 0.993
[0.484] [0.482] [0.490] [0.491] [0.487]

Parent: College 0.487 0.493 0.456 0.474 0.482 1.000
[0.500] [0.500] [0.499] [0.500] [0.500]

High risk (>5) 0.675 0.687 0.664 0.672 0.668 0.995
[0.469] [0.464] [0.473] [0.470] [0.471]

Understand rule 0.618 0.626 0.613 0.615 0.594 0.998
[0.486] [0.484] [0.487] [0.487] [0.492]

Observations 495 473 535 527 512 {0.974}#

Notes: This table reports the balance test results for the 2020 survey experiment. Columns
1-5 reports mean and standard deviation for each covariate in each randomized group.
The last columns reports p-values from ANOVA for each covariate across groups. # is
the p-value from a multinomial logit model that regresses the group indicators on all the
covariates. High risk indicates that participants’ self-reported risk-taking score is above
5 in a 1-10 scale. Understand rule indicates that participants correctly answered a survey
question about the Deferred Acceptance mechanism.
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C Additional descriptions

C.1 Measuring college application behaviors and their correlations with college admissions

C.1.1 Tier-specific college-major applications in Chinese centralized admissions

College-major applications and admissions in China proceed by institutional selectivity tiers

within province-track.42 Each college-major belongs to a predetermined tier (a college may have

majors in different tiers). A student’s eligibility to apply to colleges in each tier is mostly determined

by her CEE score. She could apply to Tier 1 if and only if her CEE score is above the tier-specific

cutoff score. She can also apply to the other tiers. A student could only apply to Tier 4 colleges if

her CEE score is below Tier 3 cutoff. Few students could not apply to any college with CEE score

below the very low Tier 4 cutoff (200 raw points out of 750).

Table C.1 shows a simplified version of the college application form in Ningxia in 2016. On

the one hand, the application (administrative) process is simplified. Many common requirements

in decentralized admissions systems (e.g., score-sending, institution-specific essays, AP courses,

reference letters) are no longer needed. Students need to choose colleges and majors of their

interests from the pull-down menu in the online application system. If they already have a list of

interested and majors at hand, they can finish the application process in minutes. On the other

hand, the application is complicated. Students would have to consider every cell in the application

form in Table C.1. They need to build knowledge and skills to pick colleges and majors strategically.

Therefore, a knowledge-based intervention on the use of college choice knowledge and skills would

improve students’ applications and admissions.

The application form corresponds to the order of admissions. Within each institutional tier,

there are several special programs that could be seen as sub-tiers within each tier. For instance,

in addition to the primary Tier 1 (choice of four colleges), students who are eligible for Tier 1

admissions could potentially apply to (1) Tier 1 - Early Admissions, (2) Tier 1 - National Affirmative

Action Programs for Rural Poor Students, (3) Tier 1 - Provincial Affirmative Action Programs for

Rural Poor Students, (4) Tier 1 - Affirmative Action Programs for Minority Students, and (5) Tier 1 -

Other Special Programs (e.g., College-level Affirmative Action Programs for Rural Poor Students).

In Ningxia in 2016, a student, in theory, could apply to 58 different colleges (out of about 1,200

colleges) and then 348 college-major options (out of about 20,000).43

42Note: This subsection is adopted from Ye (2020).
43There are 2,631 colleges in China (not including military colleges; till May 2017). But not all of them admit students
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Table C.1: College-major application form in Ningxia in 2017 (Simplified)

ID: Name: Track:

Tier No. College Major Flexible

1 2 3 4 5 6 assignment?

Tier 1 - Early admissions
1

2

Tier 2 - EA
1

2

Tier 1 - National Affirmative Action (Rural)

A

B

C

Tier 1

A

B

C

D

Tier 1 - Provincial AA (Rural)
A

B

Tier 1 - AA (Minority)

A

B

C

Tier 1 - Special majors 1

Tier 2

A

B

C

D

Tier 2 - AA (Minority)

A

B

C

Tier 2 - Special majors 1

Tier 3

A

B

C

D

Tier 3 - AA (Minority)

A

B

C

Tier 4 - EA 1

Tier 4

A

B

C

D

Notes: This table adopts the original Chinese version of the application form and excludes a few
rows of special program lists. In Ningxia in 2016, a student, in theory, could apply to 58 different
colleges and then 348 college-major options. Data source: Baidu Wenku. Numbers in the “No.”
column indicates the admissions are based on the Boston Mechanism, and letters in that column
indicates the admissions are based on the DA (Parallel) Mechanism.

from Ningxia.
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C.1.2 Measuring college choice behaviors using students’ application “big data”

Based on features of the tier-specific applications in the Chinese centralized college admission

system, we focus on two sets of strategies. These strategies are expected to capture some of the

key application behaviors for a knowledgeable and skillful student. We have also covered these

strategies in our interventions of the application guidebook, school workshop, and personalized

advising.

The first set of variables describe the targeting strategies that students should use to apply to

a reasonable combination of peer, reach/match and safety colleges (and majors). These strategies

require intensive knowledge and sophistication to make the accurate predictions of college-major

admissions probabilities and apply for college-majors based on the predictions. This set of strategies

are the key elements of our behavioral interventions as well as the data analysis in a students’

college choice and application.

Many students do not understand the underlying mechanisms of college admissions that only

rank (but not raw score) matters. They naively compare their CEE score in this year with college

admissions raw scores, which results in large errors of identifying college types. Students may

use different strategies in different tiers, but we use their behaviors in their match tier to represent

their general knowledge and skills in college applications. A match tier is the highest possible

institutional selectivity tier that a student qualifies for, which is similar to the use of selectivity tiers

in defining undermatch in the literature (e.g., Smith, Pender and Howell, 2013). Besides, we focus

on college-level application behaviors, but those choices of majors within each college is also worth

exploring in the future research.

• [Strategy 1.1] Estimated gap (within 0.15 s.d.). The behavioral rationale is that students

should equate their CEE score to admissions scores in the previous years (i.e., transforming

the raw scores to standardized scores). For example, suppose that the raw CEE scores are 500

and 550 for a student ranked 10,000 in 2016 and 2015, a student in 2016 with CEE score of

500 should then look at colleges with admissions scores around 550 in 2015. If she applied

to colleges with admissions scores around 500 in 2015, she would be very much likely to

undermatch. The raw scores vary dramatically over the years. Suppose that the raw CEE

scores are 600 and 550 for a student ranked 10,000 in 2016 and 2015, if a student with CEE

score of 600 in 2016 applied to colleges with admissions scores around 600 in 2015, she would

not be likely to be admitted by an undermatched college, but being rejected by all of her
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applied colleges. We construct this variable by estimating the gap (difference) between one’s

CEE score in 2016 and the equated median score (from 2015 to 2016) of the college she listed

in the second college choice in the match tier.44 This variable equals to 1 if the estimated

gap is within 0.15 s.d.. Sample mean is 34%. The strategy is that students need to acquire the

knowledge of score equating (and the principle of why score equating is needed) as well as

data of the crosswalks between raw scores and rankings over the years. They need to do the

score equating by themselves before choosing colleges and majors to apply for.45

• [Strategy 1.2] Apply to colleges in the match tier. The behavioral rationale is that students

would have access to most of their peer/match colleges in the match tier. Students may

have behavioral mistakes of not applying to the match tier but only to colleges in lower

tiers, or they only applied to special programs but not to colleges in the primary sub-tier.

We construct this variable by identifying students who did not apply to colleges in match tier.

Sample mean is 23% that about 23 percent of students in 2016 (in the untreated sample) did

not apply to colleges in match tier. This number does not include those who did not submit

their college applications.46

• [Strategy 1.3] Apply to colleges without admissions data in the prior year. The number of

colleges that admit students in one province may change over time. Each year there are

“new” colleges for students to apply to. The behavioral rationale is that students need to

infer/predict the admissions data in previous years for these “new” colleges using other

information, and they may take risks of applying to these colleges. However, if most students

are risk-averse and do not apply to those colleges, it is a good opportunity for skillful students

to gain an overmatched admission. We construct this variable by identifying students who

applied to colleges in the match tier without admissions data in the prior year. Sample mean

is 2%.

• [Strategy 1.4] Descending order of colleges in the match tier. The behavioral rationale is

that students should apply to a mix of reach, peer and safety colleges to maximize their

opportunities of getting into reach and peer colleges, and to minimize the risks of being

44We choose the second choice order as that it is expected that a student should apply to a match college in here
second or third choice (first choice as a reach college and last choice as a safety choice). Results are very stable if we use
other choices or a summary statistic of these choices.

45Though correctly centered, a large proportion of students apply to colleges that they would be substantially
undermtached or overmatched. It is very likely because they do not (understand and) do score equating. From our
fieldwork observations, high school teachers also lack the knowledge about score equating.

46For students who prefer low tuitions and are only eligible for Tier 3 and 4 colleges, one rational choice is that they
may not be interested in colleges in Tier 3 (private four-year colleges with high tuitions) and only applied to Tier 4
colleges.
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rejected by all (Hoxby and Avery, 2013). In order to correctly identify types of reach, peer

and safety colleges, students need to understand the classification of these types (a rule of

thumb is a 0.05-0.15 s.d. threshold) based on score-equating. Then, for the four college choices

within each tier, given the institutional feature of Differed Acceptance (Parallel) mechanism,

students should list their four choices in the descending order (choice A > choice B > choice

C > choice D), otherwise any choices in higher orders with higher ex post admissions scores

are meaningless. We construct this variable by a dichotomous indicator of students who did

so in their match tier. Sample mean is 31%.

• [Strategy 2.5] Targeting. The behavioral rationale is that, although students are nudged to

apply to a mix of reach, peer and safety colleges, they should not aim too high or too low. In

other words, they need to have a tight range of colleges (centering around their CEE scores).

We construct this variable by a dichotomous indicator of students with differences in college

median score in the prior year between the first college choice and the last choice in the match

tier in the range of (0, 0.5 s.d.). Sample mean is 35%.

The second set variables describe some general guidelines (or simple information/strategy):

• [Strategy 2.1] Number of applied colleges. The behavioral rationale is that increased ap-

plications are positively correlated with increased college opportunities (e.g., Pallais, 2015;

Hurwitz et al., 2017). However, applying to too many colleges without caution may result in

undermatched colleges in some early admissions or special programs. A common mistake

that we have observed in the field and from the data is that many Tier 1 eligible students

incorrectly applied to colleges in “Tier 2 - Early Admissions.” Colleges in “Tier 2 - Early

Admissions admit students before those in “Tier 1” that these students missed their chances

of much higher quality colleges in Tier 1. We construct this variable by counting the total

number of all the colleges that a student applied to. Sample mean (using the untreated sample

in 2016, see descriptions in the main text) is 7.2, with a minimum of 1 and a maximum of 40.

The strategy is not deterministic that we recommend students to think about their applica-

tions carefully and the number of colleges to apply to is related to the targeting strategies in

the second set variables.

• [Strategy 2.2] Percent of applied majors. The behavioral rationale is that, unless students

are strongly against specific majors and they could bear the risks of being rejected by a college

that considers her admission, students should fill in all the six major options within each

71



college (or the maximum number of majors in that college). This is because that the college-

then-major admissions give each student only one college temporary admission chance. If a

student is eventually rejected by a college due to the unmatched of major applications, she

will not be considered by other colleges in the same institutional tier and has to move down

to lower tiers. In practice, many students only have strong major preferences, but do not

understand the need for this strategy to reduce their rejection risks. We construct this variable

by calculating the percent of major applications over total available major numbers given the

colleges that a student applied to. Sample mean is 69.9%, with a minimum of 16.7% and a

maximum of 100%.

• [Strategy 2.3] Percent of flexible major assignment. The behavioral rationale is that flexible

major assignment minimizes the risks of being rejected by a college due to unmet major

choices, which happens when all the majors within a college that a student applies to have

higher admissions scores than her CEE score. If that student accepts flexible major assignment

within that college, then the college will assign her to a major that still has a spot (but that

major may not be her interested one). The flexible assignment is actually to increase admission

probability by sacrificing major preferences. We construct this variable by calculating the

percent of college applications accepting flexible major assignment over the number of applied

colleges. Sample mean is 69.2% with a minimum of 0 and a maximum of 100%. The strategy,

which we strong nudged every student to use, is to accept a flexible major assignment at most

of the applied colleges, if not all of them.

Student preferences and tastes are individual-specific and strictly unobservable. Particularly

in constrained college applications, revealed preferences may not be precisely true. We construct

four sets of proxy preferences using the application data.

The first set of preferences regard special programs that students may lack awareness and

information and knowledge to understand these policies. One example is that the affirmative

action programs for minority students vary greatly in college quality between national programs

and in-province programs. Students may apply for both and end up with lower quality in-province

colleges.

• [Preference 1.1] Minority affirmative action programs. The behavioral rationale is that stu-

dents may lack information and knowledge to differentiate/understand different AA pro-

grams. National AA programs are of high quality (in selective colleges), but provincial AA
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programs are lower-quality. We construct this variable by identifying that if a student applied

to any AA programs. Sample mean is 22%, with a minimum of 0 and a maximum of 1.

• [Preference 1.2] Early admissions. The behavioral rationale is that students may lack aware-

ness of these programs and understanding of the policy. For example, the rural poor student

affirmative action programs at selective colleges need pre-registry several months before

CEE, but many students did not complete the registration. We construct this variable by

identifying that if a student applied to any early admissions programs. Sample mean is 15%,

with a minimum of 0 and a maximum of 1.

• [Preference 1.3] Teachers’ education. The behavioral rationale is that these special teachers’

education programs may be opportunities to enter higher quality colleges (based on one’s CEE

score). However, students may have strong major preferences. We construct this variable by

counting the percent of applied majors in teacher’s education. Sample mean is 5.2%, with a

minimum of 1 and a maximum of 40.

The second set includes college tuition and quota, which are the primary information pro-

vided to students by the Department of Education.

• [Preference 2] College tuition and quota. The behavioral rationale is that low-income stu-

dents may prefer low-tuition colleges, and risk-averse students may prefer college with larger

admissions quota (Dynarski and Scott-Clayton, 2013; Hoxby and Avery, 2013; Loyalka, Wu

and Ye, 2017). In China, selective colleges have lower tuitions than non-selective colleges.

Within selectivity, tuitions vary across locations, college types and majors. Students may

also use tuition as a naive indicator of college quality. College quota may be positively

correlated with admissions probability (Kamada and Kojima, 2015), but students may be

unaware of the quota information, which is provided to them by the Department of Education.

We construct these variables by using median college tuition of all applied colleges and mean

quota of all applied colleges. Sample mean of tuition is 6,300, with a minimum of 0 and a

maximum of 40,700. Sample mean of quota is 708, with a minimum of 1 and a maximum of

2,993.

The third set of preference variables are the college location choices:

• [Preference 3.1] Out-of-province colleges. The behavioral rationale is that distance is one

important factor shaping students’ college choices, but focusing on in-province colleges
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would limit other high-quality college opportunities (Hillman, 2016; Hoxby, 2000; Long, 2004;

Miller, 2017; Ovink et al., 2018). It is also true in Ningxia that high-quality colleges concentrate

in the economically developed regions in China. Ningxia province, as a low-income region,

lacks high-quality colleges. We construct this variable by calculating the percent of applied

colleges locating in out-of-province regions (excluding economically advanced regions and

Ningxia’s neighborhood provinces). Sample mean is 38.8%, with a minimum of 0 and a

maximum of 1.

• [Preference 3.2] Out-of-province (advanced regions) colleges.

underlineWe construct this variable by calculating the percent of applied colleges locating in

the most economically advanced regions of China, including Beijing, Shanghai, Guangdong.

Sample mean is 6.6%, with a minimum of 0 and a maximum of 1.

The last set of preferences are major choices. We include the most popular ones (e.g., eco-

nomics, computer science, international) and the least popular agricultural-related majors in the

analytical variables.

• [Preference 4] Majors. We construct these variables by calculating the percent of each major

group over the total number of applied majors. The mean values of Economics-related,

Agricultural-related, Computer science-related, International-related, and Medical-related

are 24.1%, 1.3%, 3.2%, 1.6%, 11.4%. We did not provide direct interventions on major choice

but provided information about all the majors (e.g., coursework, college life, labor market

outcomes). We nudged students to get to know each major well before making decisions.

Additionally, this is also related to application strategies (e.g., flexible major assignment,

targeting).
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C.2 Personalized advising descriptions

C.2.1 Advising work-flow

We used a typical advising work-flow following the six-step structure described in the

guidebook once we start to working with one student. Before that, after students added our

advising account as friends, an administrative assistant confirmed her eligibility by verifying her

Exam ID and School ID (in 2016, we could only verify school ID). The the assistant created a chat

group for each student consisting with three people: the treated student, one advisor, and the

assistant. In 2017, students had to complete a short survey to gain the eligibility (In 2016, we asked

about individual information, such as track, CEE scores, preferences, through conversations).

• Step 1. A student (e.g., Alice) inputs her background information, including track, CEE scores

(and subject scores), eligibilities for special programs, preferences (e.g., location, college type,

majors).

– In 2016, we asked about the individual information through conversations.

– In 2017, students should complete a short survey before the start of advising.

• Step 2. The advisor (e.g., Motalk) or the assistant sends the guidebook (PDF file) to Alice and

asks her to read the guidebook.

– In 2016, we confirmed that all the “treated” students received the printed guidebook

from their schools.

• Step 3. Motalk provides score equating results to Alice.

– In 2016, we asked students to compute their equated scores by themselves. We provided

them with the crosswalk table of scores and rankings to reduce their search cost.

– In 2017, this was automatically completed in the Stata program (in a Stata log file,

Figure 1).

• Step 4. Motalk provides a short list of colleges to Alice (short list is used to reduce search

costs and to focus a student’s time on researching the targeted set of colleges).

– In 2016, we asked students to complete the search for a short list of colleges by using the

admissions data in the books (a few hundred pages) provided by Ningxia Department
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of Education. Colleges in these books are alphabetically that it imposes high search costs

for students to compare between colleges.

– In 2017, this was automatically completed (based on the administrative data we received

and were granted permissions to use from Ningxia Department of Education, as well as

students’ preferences data).

• Step 5. Alice returns a much shortened list of colleges in each institutional tier of her interest.

– In 2016, this was done through intensive conversations. Advisors walked through the

initial short list and helped students add/delete colleges.

– In 2017, students were encouraged to take some time to look at the official website (and

other information) of each college they are interested in before making the decisions.

• Step 6. Motalk provides the predicted probabilities of each college.

– In 2016, this was done using subjective evaluations or rules of thumb (e.g., using 0.05

s.d. or 0.1 s.d. as the threshold; depending on individual preferences).

– In 2017, we provided the admissions probabilities that were predicted by our machine

learning algorithm (random forest) for each college-major-list order for each students

(Figure 2).

• Step 7. Motalk helps Alice to finalize her application plan.

– In both 2016 and 2017, this process involved many conversations about choosing the

final four choices, considering different strategies (e.g., targeting), special programs, and

college-major trade-offs. The decision would be based on the predictions in Step 6.

• Step 8. Alice completes online application in the Department of Education’s centralized

system.

– We kept sending nudge, reminders and tips until the end of the college application

period.

C.2.2 How does machine learning work?

We apply machine learning and other (big) data assisted methods, together with new tech-

nology (e.g., online survey and data synchronization tools) to increase the one-on-one advising
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efficiency. These data-based methods reduced the advisor’s (and/or the student’s) work in several

ways:

1. The input of background information (using online survey and data synchronization) [Step 1]

2. Automatic score equating (in Stata) [Step 3]

3. Constructing short list of colleges (in Stata) [Step 4]

4. Predictions of admissions probabilities (in R Shiny with built-in machine learning predictions)

[Step 5]

The reduced time of the advisors could be used to increase the number of students they could

provide service to, and that for students could be used to deeper understand the knowledge and

strategies of college applications and to better collect and analyze information and data about

colleges (and majors).

C.2.3 Example

Figure C.1 provides an example of the one on one advising in 2016, which was similar to the

machine learning assisted advising in 2017 as shown in Figure A.4.

The conversations show some behavioral barriers that students had and how we helped

them in the college choice process. In Panel A, the student asked whether Shandong University

was beyond the range of “reach college” to apply to. The advisor asked the student to do the CEE

score equating and asked for the scores in the past three years (564, 588, 588). After reviewing the

admissions data, the advisor replied that it was appropriate to list Shandong University as her first

choice. In Panel B, the student sent a message after about one month reporting that “Thank you for

your advising. I have been admitted to Shandong University.”
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(a) Adjusting the reach college choice (b) Admitted to the reach college

Figure C.1: Example of the online individualized advising in 2016

Notes: This figure shows a typical case of our 1-on-1 advising. The conversations were at QQ, one of the two largest chat
forms in China.
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C.3 Prediction performance of different supervised learning models

The key element in the machine learning-assisted advising is to predict the college-major

admissions probabilities for each student. As introduced in Subsection 3.2, I trained the prediction

model using detailed applications and admissions data from the previous year and Random Forest.

In a companion work in progress after the implementation of the experiment in 2017, I have

tested other models that take much more time to develop. Random Forest overall shows good

performance. I also tested XGBoost, an algorithm that has been dominating applied machine

learning predictions using structured data (Chen and Guestrin, 2016).

Panel A of Figure C.2 compares the prediction performance (based on F1 score) of six

supervise learning models: Logistic regression, Decision Tree, Random Forest, Adaboost, XGBoost,

and Random Forest + XGBoost. F1 score is evaluated using admissions outcomes in 2017. There are

two important findings. First, boosting methods increase prediction accuracy than simpler methods

including Random Forest and the combined application of Random Forest and XGBoost has the

best performance among the six models evaluated. Unlike single models, boosting algorithms

improve the prediction performance by training a sequence of models to minimize the errors from

previous models and boosting high-performance models. XGBoost is an optimized version of

gradient boosting that minimizes errors in sequential models.

Second, domain knowledge is required to build a reasonable prediction model. A data

scientist might use the raw data where a student is admitted to a college-major and then train a

model with very low F1 scores (blue line). However, in the Chinese college admissions system,

students only receive one admission offer from the highest ranked colleges that their CEE scores

qualify for. In the data, all the other lower-ranked colleges are coded “rejected.” Therefore, it is

necessary to create simulated admissions outcomes that assume students could receive multiple

offers. This simulation is based on a good understanding of the admissions mechanisms (domain

knowledge). The red line suggests that the models have much more accurate predictions for the

simulated outcomes.

Panel B shows feature importance in the XGBoost predictions. Similar to the Random Forest

prediction in Figure A.3, a student’s ranking is the most important prediction of college-major

admissions. XGBoost uses more information from college-major admissions results from the

previous year than Random Forest.

79



7.66
.02 .17

18.53 21.22

69.04

50.1

61.12
67.35

80.57 80.91

0

25

50

75

100

Pe
rc

en
t

 

Logistic Reg  

Decision Tree  

Random Forest  
Adaboost  

XGBoost  

RF + XGB  

 

Y = Actual Admission

Y = Simulated Admission

2*(Precision*Recall)/(Precision+Recall)

F1 Score

(a) Model comparisons

(b) Feature importance in XGBoost
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