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Impact of �nancial aid on college enrollment

• Dynarski (2003) analyzes the elimination in 1982 of a large
bene�t to college-student children of Social Security recipients
who died.

• Treatment group
. = individuals with a deceased father

• Post group
. = there is one observation per individual, but these individuals
graduated high school in di�erent years, which a�ected whether
they were eligible for the bene�t
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The Model: Di�erence-in-di�erences

Y = β0 + β1Before+ β2Father Deceased+ β3Father Deceased ∗ Before+ ε

Father not deceased Father deceased Di�erence DID

Before 1982

A�er 1982

Di�erence

DID
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Results
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Introduction



Potential outcomes

• Factual vs. Counterfactual

Yi = Ti · Yi(1) + (1− Ti) · Yi(0)

. Ti: a dummy variable indicating whether individual i receives
treatment (Ti = 1) or not (Ti = 0)

. Yi(1): the outcome of individual i if she receives treatment

. Yi(0): the outcome of individual i if she does not receive treatment

• A valid causality question must involve well-de�ned causes
(treatments, manipulations), and the counterfactuals should be
unambiguously de�ned.
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Fundamental problem of causal inference

• Individual treatment e�ect

τi = Yi(1)− Yi(0)

• Causality is de�ned by potential outcomes, not by realized
(observed) outcomes

• We can only observe one of the two potential outcomes
. Missing data problem: Any statistical method dealing with
treatment e�ects necessarily imputes the counterfactual part of
the data.
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Selection bias in observed outcomes

• Holland (1986):

E[Yi(1)|Ti = 1]− E[Yi(0)|Ti = 0]
= E[Yi(1)|Ti = 1]− E[Yi(0)|Ti = 1]︸ ︷︷ ︸

τATT

+ E[Yi(0)|Ti = 1]− E[Yi(0)|Ti = 0]︸ ︷︷ ︸
selection bias

• Roy model:

Potential Outcomes: Yi(0) = Xiβ(0) + ui(0)
Yi(1) = Xiβ(1) + ui(1)

Selection/Assignment Mechanism: 1{Ti=1} = F(Xiγ) + εi

. The identi�cation is:

Xi ⊥ (ui(0),ui(1), εi)
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Causal inference designs

1 By knowledge of Assignment Mechanism
. Random assignment (RCT)

. Regression discontinuity (RD)

2 By Self-Selection
. Di�erence-in-di�erences (DID)

◦ In�uence of “other factors” �xed

. Selection on unobservables and instrumental variables (IV)
◦ Conditional on covariates, instrument “as good as randomly
assigned” (uncorrelated with potential outcomes)

◦ Another structural approach: Heckman selection model

. Selection on observables and matching (Matching)
◦ Conditional on covariates, treatment “as good as randomly assigned”
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DID

• Use data from the control group to impute untreated outcomes
in the treated group

• Arrow of time:

Y(t) = Y0(t) = Y1(t), for t ≤ T0
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Counterfactual in DID
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Counterfactual in DID
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Identi�cation

• Holland (1986):

E[Yi(1)|Ti = 1]− E[Yi(0)|Ti = 0]
= E[Yi(1)|Ti = 1]− E[Yi(0)|Ti = 1]︸ ︷︷ ︸

τATT

+ E[Yi(0)|Ti = 1]− E[Yi(0)|Ti = 0]︸ ︷︷ ︸
selection bias

• DID with time machine:

Y = β0 + β1Post+ β2Treatment+ β3Treatment ∗ Post+ ε

DID estimate = E[Yposti (1)|Ti = 1]− E[Yprei (0)|Ti = 1]︸ ︷︷ ︸
β1+β3

−

E[Yposti (1)|Ti = 0]− E[Yprei (0)|Ti = 0]︸ ︷︷ ︸
β1

=β3
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An empirical roadmap



Outline

1 Make assumptions about how the data were generated
2 Connect the untreated outcomes to the observed outcomes
3 Estimate the DID parameter
4 Extensions: Two-way �xed e�ects and event study
5 Check robustness and sensitivity
6 Related methods
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1. Setup: Data generating process

• An exogenous event/treatment
. Natural experiment
. Transparent exogenous source of variation that determine
treatment assignment (e.g., policy changes, government
randomization)

. Changes should be concentrated around the treatment

• Comparability of the treatment and control groups
. Recall the counterfactual assumption

• Collect data: {pre, post}* {treatment, control}
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2. Parallel trends

1 A picture is worth a thousand words

2 DiD will generally be more plausible if the treatment and control
groups are similar in LEVELS to begin with, not just in TRENDS.

. Any paper should address why the original levels of the
experimental and control groups di�er, and why we should not
think this same mechanism would not impact trends

. Always show a graph showing the levels of the two series you are
comparing over time, not just their di�erence

◦ Alternative: A di�erence graph + a level comparison table

. DID on a matched sample for robustness checks
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2. Parallel trends

3 Not rejecting the null hypothesis is not equivalent to con�rming
it

. Pre-testing is not a substitute for logical reasoning

. Have an explicit discussion in the paper of why it is reasonable to
think the parallel trends assumption is justi�ed, whether there
were other policies or sectoral trends going on that might be a
threat, etc.

4 Thinking carefully about what sort of violations of parallel
trends are plausible, and examining robustness to these

. Rambachan & Roth, 2019

. Bilinski & Hat�eld, 2019
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3. Estimation and inference

• Most commonly used estimator: Regression

• Semiparametric and nonparametric approaches (Athey &
Imbens, 2006)

• Matching

• Standard errors
. Bertrand, Du�o, & Mulainathan (2004), Petersen (2007), Donald &
Lang (2007)

. robust cluster s.e. (to heteroskedasticity and dependence)
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4. Extensions

• Fixed e�ects
. Multiple time periods or panel data on units
. Fixed e�ects eliminate time-speci�c or unit-speci�c unobservables

• Event study
. Estimate the “treatment e�ect” for each time unit pre and post the
event

• Heterogeneous treatment e�ects
. DDD
. Di�erence in dosage
. Quantile regressions
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5. Robustness and sensitivity tests

• Placebo test: Time
. Imagine we art�cially move the treatment time to one of those
earlier time points (i.e., prior to the time that the treatment was
actually received)

. In an ideal world, the treatment e�ect would be null.

• Placebo test: Unit
. Estimate impact of policy on a “non-equivalent dependent
variable”, i.e., an outcome that should *not* be in�uenced by the
policy but might be in�uenced by some omitted variable

• Model sensitivity (Candelaria & Shores, 2019)
. Secular time trends
. Correlated random trends (with di�erent unit levels or di�erent
functional forms)

. Cross-sectional dependence (di�erent number of common factors)
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6. Recent advancements/Related methods

1 Interactive �xed e�ects
. (Bai, 2009; Candelaria & Shores, 2019)

2 Synthetic control
. Original idea by Abadie & Gardeazabal, 2003; Abadie et al., 2010
. Synthetic DID (Arkhangelsky et al., 2019)
. Augmented synthetic control (Ben-Michael et al., 2018)
. Generalized synthetic control (Xu, 2017)
. similar to matching + DID

3 Comparative interrupted time series (CITS)
. does not require parallel pre-trends
. does require a linear model (intercept & slope) to capture the
pre-post change
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6. Recent advancements/Related methods

4 Instrumental variable for diverging trends due to unobserved
confounders

. (Freyaldenhoven et al., 2019)

. Use an observed covariate as an instrument for the unobserved
confounder (unrelated to treatment)

5 Variation in treatment timing
. (Goodman-Bacon, 2018)
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Back to Dynarski (2003)



Stata practice in 10 minutes

1 Replicate Table 2 Column 1

2 Test parallel pre-trends

3 Plot event study graph

4 Estimate heterogeneous e�ects by gender, race, or ability (AFQT
percentile)
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Dynarski (2003) Table 2 Column 1
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Pre-trends
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Event study �gure
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Heterogeneous e�ects by gender (DDD)
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Example: School �nance reform
in China
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The reform in 2006

Central counties, not in the sample

Central counties, in the sample

Western counties, not in the sample

Western counties, in the sample
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Event study graph
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Crowding-out e�ects
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Paper outline
“3. E�ects of the transfers on education spending”

• 3.1 E�ects on operational expenditures
• 3.2 Other schools as the control group

. urban schools in east

. urban schools in west/central regions

• 3.3 Compliers as the control group
• 3.4 Robustness and falsi�cation tests

. Choices of samples, measures, weighting
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Robustness checks
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Paper outline
“3. E�ects of the transfers on education spending”

• 3.4 Robustness and falsi�cation tests
. Choices of samples, measures, weighting
. High school spending

• 3.5 E�ects on other public education outcomes
. Decrease in teacher salary (constant price)
. Small change in Gini coe�cient

• 3.6 Null e�ects on other social spending
• 3.7 Where do “missing” funds end up
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Heterogeneity analysis
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Example: College admissions
reform in China



College-major to college-�eld admissions
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Null e�ects and why?
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Summary



Guiding questions of a DID study

1 Ideal experiment
. How could you use an RCT to answer this causal question?

2 Identi�cation strategy
. How does the study use observational data to approximate an
ideal experiment?

3 Internal validity
. First think about (and discuss) why treatment status varies in
general. Do people choose treatment? Is it chosen for them? By
what process? Is the comparison group plausible?

. Then describe the identifying variation in this study. This is the
variation le� a�er we control for the other variables.

. What are the key threats to the internal validity of the study?
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Guiding questions of a DID study

4 External validity
. To what populations, programs and places can the results be
safely extrapolated?

5 Implication
. Do the conclusions and/or recommendations follow logically from
the empirical evidence presented?
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Final discussion
Using DID to estimate the COVID-19 e�ect
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Final discussion
Using DID to estimate the COVID-19 e�ect ( Goodman-Bacon & Marcus, 2020)

• Di�erent policies across place and time

• DID paper racing
. At least �ve recent papers use DD methods to show that
non-pharmaceutical interventions reduce interactions, infections,
or deaths (Dave et al., 2020; Fang et al., 2020; Friedson et al., 2020;
Gupta et al., 2020; Hsiang et al., 2020).
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https://cdn.vanderbilt.edu/vu-my/wp-content/uploads/sites/2318/2020/05/11154933/Covid-DD_v2.pdf


Using DID to estimate the COVID-19 e�ect
( Goodman-Bacon & Marcus, 2020)

Challenges

• Packaged policies

• Reverse causality

• Voluntary precautions

• Anticipation

• Spillovers

• Variation in policy timing

• Measurement and scaling of the dependent variable
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https://cdn.vanderbilt.edu/vu-my/wp-content/uploads/sites/2318/2020/05/11154933/Covid-DD_v2.pdf


Using DID to estimate the COVID-19 e�ect
( Goodman-Bacon & Marcus, 2020)

Recommendations

• Estimate dynamics (event study)

• Choose the control group wisely

• Be careful of regression DID

• Sign the bias

• Be clear about what is knowable
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Thanks!
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