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Example: Angrist & Lavy (1999)



E�ects of class size
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Maimonides (1138-1204)
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Regression Discontinuity
First stage: Y = treatment
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Second stage: Y = outcome
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Balance test (1)
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Balance test (2)
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Balance test (3)
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Introduction



Potential outcomes

• Factual vs. Counterfactual

Yi = Ti · Yi(1) + (1− Ti) · Yi(0)

. Ti: a dummy variable indicating whether individual i receives
treatment (Ti = 1) or not (Ti = 0)

. Yi(1): the outcome of individual i if she receives treatment

. Yi(0): the outcome of individual i if she does not receive treatment

• A valid causality question must involve well-de�ned causes
(treatments, manipulations), and the counterfactuals should be
unambiguously de�ned.
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Fundamental problem of causal inference

• Individual treatment e�ect

τi = Yi(1)− Yi(0)

• Causality is de�ned by potential outcomes, not by realized
(observed) outcomes

• We can only observe one of the two potential outcomes

. Missing data problem: Any statistical method dealing with
treatment e�ects necessarily imputes the counterfactual part of
the data.

9



Selection bias in observed outcomes

• Holland (1986):

E[Yi(1)|Ti = 1]− E[Yi(0)|Ti = 0]

= E[Yi(1)|Ti = 1]− E[Yi(0)|Ti = 1]︸ ︷︷ ︸
τATT

+ E[Yi(0)|Ti = 1]− E[Yi(0)|Ti = 0]︸ ︷︷ ︸
selection bias

• Roy model:

Potential Outcomes: Yi(0) = Xiβ(0) + ui(0)

Yi(1) = Xiβ(1) + ui(1)
Selection/Assignment Mechanism: 1{Ti=1} = F(Xiγ) + εi

. The identi�cation is:

Xi ⊥ (ui(0),ui(1), εi)
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Causal inference designs

1 By knowledge of Assignment Mechanism

. Random assignment (RCT)

. Regression discontinuity (RD)

2 By Self-Selection

. Di�erence-in-di�erences (DID)
◦ In�uence of “other factors” �xed

. Selection on unobservables and instrumental variables (IV)
◦ Conditional on covariates, instrument “as good as randomly
assigned” (uncorrelated with potential outcomes)

◦ Another structural approach: Heckman selection model

. Selection on observables and matching (Matching)
◦ Conditional on covariates, treatment “as good as randomly assigned”
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Sharp Regression Discontinuity



Outline

• RD Designs

. Sharp, fuzzy, kink, fuzzy kink

. Analogies with experiments

. Multi-cuto�, multi-variable

• Graphical presentation and falsi�cation
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Four facts of RD Designs

1 Simple and objective: Requires little information, if design
available

2 Might be viewed as a “local” randomized trial

3 Easy to falsify, easy to interpret

4 Careful: very local!
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Score, cuto�, treatment

• Units receive a score (“running variable”)

• A treatment is assigned based on the score and a known cuto�

• The treatment

. is given to units whose score is greater than the cuto�

. is withheld from units whose score is less than the cuto�

• Under some assumptions, the abrupt change in the probability
of treatment assignment allows us to learn about e�ect of
treatment
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Sharp Regression Discontinuity Design
Treatment assignment
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Sharp Regression Discontinuity Design
Fundamental problem of causal inference

• n units, indexed by i = 1, 2, ...,n

• Unit’s score is Xi, treatment is Ti = 1(Xi ≥ x̄)

• Two potential outcomes:

. Yi(1): outcome that would be observed if i received treatment

. Yi(0): outcome that would be observed if i received control

• The observed outcome:

Yi =

{
Yi(0) if Xi < x̄
Yi(1) if Xi ≥ x̄
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Sharp Regression Discontinuity Design
Outcome
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Sharp Regression Discontinuity Design
Treatment e�ect

• A special situation occurs at the cuto� X = x̄, the only point at
which we may “almost” observe both curves

• Two groups of units:

. with score equal to x̄, Xi = x̄→ treated

. with with score barely below x̄, X = x̄− ε→control

• Local randomization

. Yet if values of the average potential outcomes at x̄ are not
abruptly di�erent from their values at points near x̄

. these two sets of units would be identical except for their
treatment status

• Local average treatment e�ect: Vertical distance at x̄
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Sharp Regression Discontinuity Design
Treatment e�ect

RD treatment effect
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RCT vs. RD

• RCT (Experimental design)

. Treatment
◦ Ti ∈ {0, 1}, Ti independent of (Yi(0), Yi(1), Xi)

. Average treatment e�ect (ATE)

τATE = E[Yi(1)− Yi(0)] = E[Yi(1)|Ti = 1]− E[Yi(0)|Ti = 0]

• RD (Quasi-experimental design)

. Treatment
◦ Ti ∈ {0, 1}, Ti = 1(Xi ≥ x̄)

. Local average treatment e�ect at the cuto� (LATE)

τSRD = E[Yi(1)− Yi(0)|Xi = x̄] = lim
x↓x̄

E[Yi(1)|Xi = x]− lim
x↑x̄

E[Yi(0)|Xi = x]
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Example 1: Head Start (Ludwig
and Miller, 2007 QJE)



Ludwig and Miller, 2007 QJE

• Question: Impact of Head Start on infant mortality

• Data

. Yi = child mortality 5 to 9 years old

. Ti = whether county received Head Start assistance

. Xi = 1960 poverty index (x̄ = 59.1984)

• Potential outcomes

. Yi(0) = child mortality if had not received Head Start

. Yi(1) = child mortality if had received Head Start

21



First stage
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Second stage
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Example 2: School Choice



Exam schools in the U.S.
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First stage
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First stage
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Second stage
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High school choice in China
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First stage
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Balance tests

30



Second stage
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Results are di�erent in rural China
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First stage
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Second stage
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Potential reason 1: Ability tracking within school
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First stage
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Second stage
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Potential reason 2: School di�erence and selection
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Two cuto�s
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STEM vs. non-STEM tracks
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Example 3: College Entrance Exam



Cuto� in College Entrance Exam
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First stage
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Second stage
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The RD Family



Key empirical points

• RD designs exploit “variation” near the cuto�

• Graphical analysis is very useful: validation & falsi�cation

• Need to work with data near cuto�

. bandwidth or window selection

• Covariates and density of running variable should be similar
near cuto�

• Zero “overlap” so extrapolation is unavoidable (local or global).

• Causal e�ect is di�erent (in general) than RCT
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Estimands and Identi�cation

• Parameters of interests:

. Sharp RD (SRD) and Fuzzy RD (FRD)

. Kink RD (KRD) and Kink Fuzzy RD (KFRD)

. Multiple scores RD and Geographic RD

. Pooled RD v.s. Multiple Cuto� RD

• Inference methods roughly the same

• Falsi�cation methods more di�erent in each case
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Sharp/Fuzzy RD

• Sharp RD - perfect compliance

. every unit with score above x̄ receives treatment

. every unit with score below x̄ receives control

• Fuzzy RD - imperfect compliance

. probability of receiving treatment changes at x̄, but not necessarily
from 0 to 1

. some units with score above x̄ may decide not to take up
treatment
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Sharp/Fuzzy Kink RD

• A treatment or policy is assigned on the basis of a score via a
formula that relates the assignment variable to the treatment

• The formula has a “kink” point (x̄) at which it changes
discontinuously

• We expect a change in slope at x̄, instead of a change in
intercept
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Formula-based UI bene�ts
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First stage
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Second stage
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Multiple scores RD
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Multiple scores RD
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Geographic RD
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Geographic RD
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Geographic RD
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Multiple Cuto� RD
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Graphical and falsi�cation methods

• Always (beautifully) plot data: main advantage of RD designs!

• Plot outcomes

• Plot covariates

• Plot density of Xi (manipulation tests: continuity at cuto�)

• Plot placebo outcomes (0 RD treatment e�ects)
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RD packages
https://sites.google.com/site/rdpackages/
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Practice Example: Class Size



Angrist & Lavy, 1999 QJE
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What is the e�ect of class size on test scores?

1 What is an ideal RCT to answer this question?

2 Whether and how an RD design will help?

3 Plot: 1st stage

4 Plot: 2nd stage

5 Plot: Covariates

6 Plot: Manipulation tests

7 Estimates: Parametric

8 Estimates: Non-parametric
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Thanks!
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